

UNIVERSIDAD AGRARIA DEL ECUADOR FACULTAD DE CIENCIAS AGRARIAS CARRERA DE INGENIERÍA AMBIENTAL

CAPTURA DE CARBONO DEL MANGLE ROJO (Rhizophora mangle) EN EL ÁREA NACIONAL DE RECREACIÓN ISLA SANTAY TRABAJO NO EXPERIMENTAL

Trabajo de titulación presentado como requisito para la obtención del título de

INGENIERO AMBIENTAL

AUTOR PITA VILLAMAR ROBERTO FLAVIO

TUTOR
ARIZAGA GAMBOA RAUL ENRIQUE

GUAYAQUIL - ECUADOR

2020

UNIVERSIDAD AGRARIA DEL ECUADOR FACULTAD DE CIENCIAS AGRARIAS CARRERA DE INGENIERÍA AMBIENTAL

APROBACIÓN DEL TUTOR

Yo, ARIZAGA GAMBOA RAÚL ENRIQUE, docente de la Universidad Agraria del Ecuador, en mi calidad de Tutor, certifico que el presente trabajo de titulación: CAPTURA DE CARBONO DEL MANGLE ROJO (*Rhizophora mangle*) EN EL ÁREA NACIONAL DE RECREACIÓN ISLA SANTAY, realizado por el estudiante PITA VILLAMAR ROBERTO FLAVIO; con cédula de identidad N° 0951278449 de la carrera INGENIERÍA AMBIENTAL, Unidad Académica Guayaquil, ha sido orientado y revisado durante su ejecución; y cumple con los requisitos técnicos exigidos por la Universidad Agraria del Ecuador; por lo tanto se aprueba la presentación del mismo.

Atentamente,

ARIZAGA GAMBOA RAÚL ENRIQUE

Guayaquil, 23 de septiembre del 2020

UNIVERSIDAD AGRARIA DEL ECUADOR FACULTAD DE CIENCIAS AGRARIAS CARRERA DE INGENIERÍA AMBIENTAL

APROBACIÓN DEL TRIBUNAL DE SUSTENTACIÓN

Los abajo firmantes, docentes designados por el H. Consejo Directivo como miembros del Tribunal de Sustentación, aprobamos la defensa del trabajo de titulación: "CAPTURA DE CARBONO DEL MANGLE ROJO (*Rhizophora mangle*) EN EL ÁREA NACIONAL DE RECREACIÓN ISLA SANTAY", realizado por el estudiante PITA VILLAMAR ROBERTO FLAVIO, el mismo que cumple con los requisitos exigidos por la Universidad Agraria del Ecuador.

Atentamente,		
	Diego Muñoz Naranjo PRESIDENTE	- lng.
Diego Arcos Jácome Ing. EXAMINADOR PRINCIPAL	-	Luis Morocho Rosero Ing. EXAMINADOR PRINCIPAL
_	Raúl Arizaga Gamboa EXAMINADOR SUPLE	•

Guayaquil, 8 de septiembre del 2020

Dedicatoria

Dedico este trabajo a Dios, a mi padre el Sr. Washington Pita Yagual y a mi madre la Sra. Alexandra Villamar Vera que siempre conté con su apoyo incondicional en la etapa universitaria. También le dedico mi trabajo a la Srta. María José Merejildo que siempre conté con su ayuda en los momentos más difíciles de mi carrera.

Agradecimiento

Le agradezco a mi tutor el Blg. Raul Arizaga y a la Oce. Leila Zambrano que me guiaron en la realización de este trabajo. Agradezco a la Blga. Paola Peñafiel por su ayuda técnica en la ejecución de este trabajo Le agradezco de gran manera al personal del Área Nacional de Recreación Isla Santay que siempre estuvieron prestos a ayudarme en la realización de mi trabajo.

6

Autorización de Autoría Intelectual

Yo PITA VILLAMAR ROBERTO FLAVIO, en calidad de autor del proyecto

realizado, sobre "CAPTURA DE CARBONO DEL MANGLE ROJO (Rhizophora

mangle) EN EL ÁREA NACIONAL DE RECREACIÓN ISLA SANTAY ", por la

presente autorizo a la UNIVERSIDAD AGRARIA DEL ECUADOR, hacer uso de

todos los contenidos que me pertenecen o parte de los que contienen esta obra,

con fines estrictamente académicos o de investigación.

Los derechos que como autor(a) me correspondan, con excepción de la presente

autorización, seguirán vigentes a mi favor, de conformidad con lo establecido en

los artículos 5, 6, 8; 19 y demás pertinentes de la Ley de Propiedad Intelectual y su

Reglamento.

Guayaquil, septiembre 23 del 2020

PITA VILLAMAR ROBERTO FLAVIO

C.I. 0951278449

Índice general

APROBACIÓN DEL TUTOR	2
APROBACIÓN DEL TRIBUNAL DE SUSTENTACIÓN	3
Dedicatoria	4
Agradecimiento	5
Autorización de Autoría Intelectual	6
Índice general	7
Índice de tablas	11
Índice de figuras	15
Resumen	17
1. Introducción	19
1.1 Antecedentes del problema	21
1.2 Planteamiento y formulación del problema	24
1.2.1 Planteamiento del problema	24
1.2.2 Formulación del problema	25
1.3 Justificación de la investigación	25
1.4 Delimitación de la investigación	26
1.5 Objetivo general	27
1.6 Objetivos específicos	27
1.7 Hipótesis	27
2. Marco teórico	28
2.1 Estado del arte	28
2.2 Bases teóricas	31
2.2.1 Cambio Climático	31
2.2.2 Efecto Invernadero	31

2.2.3 Gases de Efe	ecto Invernadero		31
2.2.4 Carbono azu	I		32
2.2.5 Biomasa fore	estal		32
2.2.6 Ecosistema	manglar		32
2.2.6.1 Mangle i	negro <i>(Avicennia germii</i>	nans)	32
2.2.6.2 Mangle r	ojo (Rhizophora mangl	e)	33
2.2.6.3 Mangle I	olanco <i>(Laguncularia ra</i>	cemosa)	34
2.2.7 Isla Santay			35
2.2.8 Método de tr	ansectos		36
2.2.9 Método de tr	ansectos variables		36
2.2.10 Ecuaciones	alométricas		36
2.3 Marco legal			37
2.3.1 Ley de la Co	nstitución de la Repúbli	ca del Ecuador 2008	37
2.3.2 Convenio so	bre la Diversidad Biolός	gica: 1992	39
2.3.3 Convención	sobre el Comercio Inter	nacional de las Espe	ecies
Amenazadas de F	lora y Fauna Silvestres	(CITES): 1975	40
2.3.4 La Conferenc	cia de las Partes (COP).		40
2.3.5 Convenio de	la Tierra de Río de Jane	eiro	40
2.3.6 Convención	relativa a los Humedale	s de importancia inte	ernacional,
especialmente co	mo hábitat de aves acuá	iticas, RAMSAR	41
2.3.7 Ley Forestal	y de Conservación de Á	Áreas Naturales y Vid	la Silvestre
codificada			42
2.3.8 Ley que prot	ege La Biodiversidad		43
2.3.9 Lev de Gestie	ón Ambiental		43

2.3.10 Ley para la Preservación de Zonas de Reserva y Parques Nacionales
43
2.3.11 Código Orgánico del Ambiente44
2.3.12 Código Orgánico Integral Penal45
2.3.13 Código Orgánico de Organización Territorial Autonomía45
3. Materiales y métodos46
3.1 Enfoque de la investigación46
3.1.1 Tipo de investigación46
3.1.2 Diseño de investigación46
3.2.1 Variables47
3.2.1.1. Variable independiente47
3.2.1.2. Variable dependiente47
3.2.2 Recolección de datos47
3.2.4.1. Recursos47
3.2.4.2. Métodos y técnicas48
3.2.3 Análisis estadístico49
4. Resultados53
4.1 Identificación de las zonas de presencia de la especie de mangle rojo
(<i>Rhizophora mangle</i>) mediante sistema de información geográfica53
4.2 Determinación de la cantidad de captura de carbono mediante
ecuaciones alométricas y caracterización de la biomasa del mangle rojo
(<i>Rhizophora mangle</i>) de la Isla Santay54
4.2.1 Área basal del árbol (m²/ha)55
4.2.2 Volumen del árbol (m³/ha)56
4.2.3 Biomasa total del fuste (t/ha)

4.2.4 Bid	omasa total aérea (t/ha)	58
4.2.5 Es	timación de carbono almacenado en biomasa (t)	59
4.3 Prog	grama de divulgación de la importancia del mangle rojo	(Rhizophora
mangle)	como sumidero de carbono en el Área Nacional de Re	creación Isla
Santay.		61
4.3.1 Int	roducción	61
4.3.2 Ob	ojetivo general	61
4.3.2.1	Objetivos específicos	62
4.3.3 Me	ensaje	62
4.3.4 De	estinatarios	62
4.3.5 He	rramientas y actividades	62
4.3.5.1	Herramientas educativas:	62
4.3.5.2	Herramientas tecnológicas:	62
4.3.5.3	Herramientas audiovisuales:	63
4.3.5.4	Herramientas publicitarias	63
4.3.6 Cr	onograma	63
4.3.7 Pro	esupuesto	64
4.3.8 Se	guimiento y evaluación- resultados esperados	65
5. Discu	sión	67
6. Conc	lusiones	69
7. Reco	mendaciones	70
BIBLIO	GRAFÍA	71
8. Anex	os	78

Índice de tablas

	Tabla 1. Resultados Estadísticos del Área Basal	55
	Tabla 2.Resultados Estadísticos del Volumen del Árbol	56
	Tabla 3. Resultados Estadísticos de la Biomasa Total del Fuste	57
	Tabla 4. Resultados Estadísticos de la Biomasa total aérea	58
	Tabla 5.Resultados Estadísticos del Carbono Total Almacenado	59
	Tabla 6. Estimado de Carbono Total Almacenado en el ANRIS	60
	Tabla 7. Cronograma para programa de divulgación	63
	Tabla 8. Presupuesto para programa de divulgación	64
	Tabla 9. Programa de divulgación – seguimiento y evaluación	66
	Tabla 10. Coordenadas de Transecto 1	90
	Tabla 12. Coordenadas de Transecto 2	91
	Tabla 14. Coordenadas de Transecto 3	92
	Tabla 15. Coordenadas de árboles del Transecto 3	92
	Tabla 16. Coordenadas de Transecto 4	93
	Tabla 17. Coordenadas de árboles del Transecto 4	93
	Tabla 18. Coordenadas del Transecto 5	94
	Tabla 19. Coordenadas de transecto 5	94
	Tabla 20. Modelo de Regresión para Biomasa de Mangle Rojo (Rhizoph	ıora
n	nangle)	95
	Tabla 21. Carbono capturado por ecosistemas	95
	Tabla 22. Transecto 1 Árbol 1	96
	Tabla 23. Transecto 1 Árbol 2	96
	Tabla 24. Transecto 1 Árbol 3	96
	Tabla 25. Transecto 1 Árbol 4	97

Tabla 26. Transecto 1 Árbol 5	97
Tabla 27. Transecto 1 Árbol 6	97
Tabla 28. Transecto 1 Árbol 7	98
Tabla 29. Transecto 1 Árbol 8	98
Tabla 30. Transecto 1 Árbol 9	98
Tabla 31. Transecto 2 Árbol 1	99
Tabla 32. Transecto 2 Árbol 2	99
Tabla 33. Transecto 2 Árbol 3	99
Tabla 34. Transecto 2 Árbol 4	100
Tabla 35. Transecto 2 Árbol 5	100
Tabla 36. Transecto 2 Árbol 6	100
Tabla 37. Transecto 2 Árbol 7	101
Tabla 38. Transecto 2 Árbol 8	101
Tabla 39. Transecto 2 Árbol 9	101
Tabla 40. Transecto 2 Árbol 10	102
Tabla 41. Transecto 2 Árbol 11	102
Tabla 42. Transecto 3 Árbol 1	102
Tabla 43. Transecto 3 Árbol 2	103
Tabla 44. Transecto 3 Árbol 3	103
Tabla 45. Transecto 3 Árbol 4	103
Tabla 46. Transecto 3 Árbol 5	104
Tabla 47. Transecto 3 Árbol 6	104
Tabla 48. Transecto 3 Árbol 7	104
Tabla 49. Transecto 3 Árbol 8	105
Tabla 50. Transecto 3 Árbol 9	105

Tabla 51. Transecto 3 Árbol 10	105
Tabla 52. Transecto 3 Árbol 11	106
Tabla 53. Transecto 3 Árbol 12	106
Tabla 54. Transecto 3 Árbol 13	106
Tabla 55. Transecto 3 Árbol 14	107
Tabla 56. Transecto 3 Árbol 15	107
Tabla 57. Transecto 4 Árbol 1	107
Tabla 58. Transecto 4 Árbol 2	108
Tabla 59. Transecto 4 Árbol 3	108
Tabla 60. Transecto 4 Árbol 4	108
Tabla 61. Transecto 4 Árbol 5	109
Tabla 62. Transecto 4 Árbol 6	109
Tabla 63. Transecto 4 Árbol 7	109
Tabla 64. Transecto 4 Árbol 8	110
Tabla 65. Transecto 4 Árbol 9	110
Tabla 66. Transecto 4 Árbol 10	110
Tabla 67. Transecto 4 Árbol 11	111
Tabla 68. Transecto 4 Árbol 12	111
Tabla 69. Transecto 4 Árbol 13	111
Tabla 70. Transecto 5 Árbol 1	112
Tabla 71. Transecto 5 Árbol 2	112
Tabla 72. Transecto 5 Árbol 3	112
Tabla 73. Transecto 5 Árbol 4	113
Tabla 74. Transecto 5 Árbol 5	113
Tabla 75. Transecto 5 Árbol 6	113

Tabla 76. Transecto 5 Árbol 7	114
Tabla 77. Transecto 5 Árbol 8	114
Tabla 78. Transecto 5 Árbol 9	114
Tabla 79. Transecto 5 Árbol 10	115
Tabla 80. Transecto 5 Árbol 11	115
Tabla 81. Transecto 5 Árbol 12	115

Índice de figuras

Figura 1. Mapa de Cobertura Vegetal53
Figura 2. Mapa de Distribución de Transectos54
Figura 3. Resultados del Área Basal del Árbol55
Figura 4. Resultados del Volumen del Árbol56
Figura 5. Resultados de la Biomasa Total del Fuste57
Figura 6. Resultados de la Biomasa Total Aérea58
Figura 7. Resultados de Carbono Total59
Figura 8. Valores totales de carbono almacenado por transectos60
Figura 9. Mapa Del Área de Estudio78
Figura 10. Mediciones del DAP (1,30m) según la forma del árbol78
Figura 11. Cálculo de la altura del árbol78
Figura 12. Depósitos superficiales de C en bosques tropicales79
Figura 13. Carbono capturado por ecosistemas79
Figura 14. Mapa de Transecto 180
Figura 15. Mapa de Transecto 280
Figura 16. Mapa de Transecto 381
Figura 17. Mapa de Transecto 481
Figura 18. Mapa de Transecto 5
Figura 19. Pronunciamiento Favorable del MAE83
Figura 20. Tabla de Mareas Guayaquil (Rio Guayas 2020) Primer Trimestre84
Figura 21. Tabla de Mareas Guayaquil (Rio Guayas 2020) Segundo Trimestre
85
Figura 22. Tabla de Mareas Guayaquil (Rio Guayas 2020) Tercer Trimestre86
Figura 23. Tabla de Mareas Guayaquil (Rio Guayas 2020) Cuarto Trimestre87

Figura 24. Toma del DAP del mangle rojo	88
Figura 25. Toma de datos	88
Figura 26. Rotulación del mangle rojo	88
Figura 27. Toma de altura del mangle rojo	88
Figura 28. Toma de coordenada y altura	89
Figura 29. Registro de datos de cada árbol	89
Figura 30. Cámara y Distanciómetro	89
Figura 31. GPS Spectra precisión	89
Figura 32. Cinta métrica	89

Resumen

El presente estudio fue realizado para conocer la cantidad de captura de carbono de la especie mangle rojo (Rhizophora mangle) en el Área Nacional de Recreación Isla Santay (ANRIS), el objetivo que persigue la investigación primero es conocer la extensión que ocupa en la isla el mangle rojo para luego mediante ecuaciones alométricas estimar la captura de carbono de la especie Rhizophora mangle por lo tanto con los resultados obtenidos poder establecer medidas de conservación apoyándonos de un programa de divulgación de dicha información el cual dará a conocer a los habitantes y visitantes de la isla los beneficios principales del mangle y lo importante que es su conservación . Las ecuaciones alométricas utilizadas en este trabajo corresponden exclusivamente a la especie Rhizophora mangle la cual mediante su aplicación se obtuvo como resultado un valor total de 743,81 t/ha de carbono capturado para esta especie en el ANRIS, finalmente cabe recalcar que si este valor lo multiplicamos por el área total calculada de mangle rojo se obtendrá un valor estimado de 186503,55 toneladas de carbono lo cual ayuda significativamente a la captura de carbono presente en la atmosfera, contribuyendo de manera positiva al cambio climático y sus efectos.

Palabras clave: Cambio Climático, Captura de Carbono, Cobertura Vegetal Ecuaciones Alométricas, *Rhizophora mangle*.

Abstract

This study was conducted to understand the amount of carbon capture of the red mangrove species (*Rhizophora mangle*) in the National Recreation Area Santay Island (ANRIS), the goal that the research pursues first is to know the extent that occupies the red mangrove on the island and then through allometric equations estimate the carbon capture of the species *Rhizophora mangle* therefore with the obtained results to be able to establish conservation measures supporting a programme to disclose such information which will make known to the inhabitants and visitors of the island the main benefits of the mangrove and how important its conservation is. The allometric equations used in this work correspond exclusively to the species *Rhizophora mangle* which through its application resulted in a total value of 743.81 t/ha of captured carbon for this species in ANRIS, finally it should be emphasized that if this value is multiplied by the total calculated area of red mangrove it will get an estimated value of 186503,55 tons of carbon which significantly helps the capture of carbon present in the atmosphere, contributing positively to climate change and its effects.

Keywords: Climate Change, Carbon Capture, Vegetable Coverage, Alometric Equations, *Rhizophora mangle*.

1. Introducción

A nivel global el cambio climático ocupa hoy uno de los primeros lugares entre los problemas que afectan a la humanidad, por sus efectos medioambientales y, sobre todo, porque su principal causa determinante es el incremento de los gases de efecto invernadero, resultantes de las actividades humanas (Fernández, 2012).

El clima del planeta se está calentando "más allá de toda duda razonable" y de una manera exponencial. Hablamos de un calentamiento sin precedentes históricos, con la temperatura aumentando sucesivamente durante cada una de las tres últimas décadas más que cualquier década anterior (IPCC, 2014).

El cambio climático está afectando a procesos esenciales de muchos organismos como el crecimiento, la reproducción y la supervivencia de las primeras fases vitales; pudiendo llegar a comprometer la viabilidad de algunas poblaciones. Todos estos cambios provocan también una importante pérdida de biodiversidad y diversidad genética. En el 2018 tenía lugar un triste acontecimiento para la biodiversidad planetaria: dos tercios de la Gran Barrera de Coral australiana habían muerto por el aumento de las temperaturas generado por el cambio climático y es que uno de los efectos más directos del cambio climático, es la desaparición o alteración de los ecosistemas (GREENPEACE, 2018).

La aceleración del cambio climático en las últimas décadas, resultado del incremento de gases de efecto invernadero producidos por el uso de combustibles fósiles, es una realidad social que amenaza gravemente a distintos ecosistemas. El incremento de la temperatura global ocasionada por el efecto invernadero es responsable del aumento del nivel del mar, de la disminución de las capas de nieve y hielo, así como del cambio de tendencia en las precipitaciones y todo ello afectará a los sistemas naturales vinculados al hielo, a los sistemas hidrológicos y a la

calidad de las aguas, a los sistemas biológicos marinos y de agua dulce y a la productividad agrícola y forestal (Fernández, 2012).

El cambio climático global asociado al aumento potencial de la temperatura superficial del planeta es uno de los problemas ambientales más severos que se enfrentan en el presente siglo. Este problema se acentúa por el rápido incremento actual en las emisiones de gases de efecto invernadero "GEI" (Ordóñez, 2008).

Los efectos producidos por el cambio climático global aparentemente están siendo evidentes a mayor celeridad que lo estimado hace veinticinco años. Es decir, en periodos cortos o más aún en tiempo real, el hombre está observando colapsos ecológicos y su efecto en los sistemas sociales y económicos como consecuencia que se atribuye al cambio climático global (Yáñez, 1998).

A nivel regional los manglares tienen interés especial para México, ya que por su extensión (764 486 ha) ocupan el cuarto lugar a nivel mundial. En la Península Yucatán (PY) el 98% de la línea de costa se encuentra ocupado por manglar y contiene el 55% de este ecosistema de México, del cual un 76.2% está actualmente bajo protección y se considera en el tratado intergubernamental conocido como "Convención Ramsar" en el que se los países miembros, como México, se comprometen a mantener las características ecológicas de sus humedales de importancia internacional y planificar el uso sostenible de todos los humedales situados en sus territorios (Herrera, 2017).

De un total aproximado de 200 estudios sobre manglares de México, sólo 48 contienen datos o información para una primera estimación del CO almacenado en este ecosistema y sólo 5 de ellos evalúan todos los almacenes de CO en diferentes tipos de manglar de acuerdo con los lineamientos metodológicos del IPCC. El promedio de carbono almacenado en los manglares de México es de 364 T C ha,

que contrasta con el promedio para ecosistemas terrestres (62.6 T C ha). Los mayores almacenes se localizan en los manglares del Golfo de México (>1200 T C ha) (Fourqurean, 2017).

A nivel local el cambio climático ha exacerbado la vulnerabilidad del país, la cual es crítica en diversas zonas como, por ejemplo, en la zona litoral, donde los cambios en las dinámicas costeras exigen la implementación de medidas de adaptación ante el ascenso del nivel medio del mar, el retroceso de la línea de costa, el aumento de la temperatura del agua, la acidificación, la desprotección ante eventos meteorológicos extremos y las pérdidas humanas y económicas. Aunque no existen previsiones contrastables sobre el aumento del nivel del mar en Ecuador, los datos manejados a nivel mundial prevén elevaciones que permiten considerar fenómeno incidencia este como una amenaza con significativa, fundamentalmente en las zonas más bajas, que pueden dar lugar no solo al incremento de las inundaciones, sino a una aceleración de la erosión costera y a la salinización de acuíferos y tramos finales de los ríos (Ministerio del Ambiente, 2019).

1.1 Antecedentes del problema

A nivel global el clima ha permanecido significativamente estable durante los últimos 10.000 años, proporcionando un escenario adecuado para el desarrollo de la especie humana. Sin embargo, hoy existen claros signos de que el clima está cambiando, y el cambio climático es uno de los retos más importantes a los que debe enfrentarse una humanidad globalizada. El grupo intergubernamental de Expertos en Cambio Climático (IPCC) llegó a la conclusión de que el calentamiento global, producido desde mediados del siglo XX ha sido muy probablemente debido a la influencia humana (Fernández, 2012).

La temperatura global promedio para 2015-2019 está en camino de ser la más cálida de cualquier otro período equivalente registrado. Actualmente se estima en 1.1° C, un grado más por encima de los tiempos preindustriales (1850-1900). Las olas de calor en los últimos años han sido las más letales, afectaron a todos los continentes y establecieron registros récord de temperatura a nivel nacional. Las olas de calor generalizadas y duraderas, los incendios récord y otros eventos devastadores como los ciclones tropicales, las inundaciones y la sequía han tenido un gran impacto en el desarrollo socioeconómico y el medio ambiente (Naciones Unidas, 2019).

El incremento de las temperaturas se está produciendo de forma generalizada, aunque con mayor intensidad en las zonas septentrionales y sobre todo en la región Ártica. Más importante que el valor del aumento de la temperatura, lo es su ritmo de crecimiento en los últimos años. Entre los años 1995 y 2006, la temperatura creció más que desde 1850 y, además, el calentamiento lineal entre 1956 y 2005 fue de 0.13°C/10 años, es decir, el doble de lo experimentado entre 1906 y 2005 que fue de 0.06°C/10 años. Este calentamiento es superior en las regiones septentrionales siendo en el artículo el doble del promedio general y, a su vez, la tierra se calienta más que el mar (Fernández, 2012).

El dióxido de carbono (CO₂) es el GEI antropógeno más importante. Sus emisiones anuales aumentaron en torno a un 80% entre 1970 y 2004. La disminución a largo plazo de las emisiones de CO₂ por unidad de energía suministrada invirtió su tendencia a partir del año 2000 (IPCC, 2007).

Las concentraciones atmosféricas de CO₂ (379 ppm) y CH4 (1774 ppm) en 2005 exceden con mucho el intervalo natural de valores de los últimos 650.000 años. Los aumentos de la concentración mundial de CO₂ se deben principalmente a la

utilización de combustibles de origen fósil y en una parte apreciable pero menor, a los cambios de uso de la tierra. Es muy probable que el aumento observado de la concentración de CH₄ se deba predominantemente a la agricultura y a la utilización de combustibles de origen fósil. El aumento de metano ha sido menos rápido desde comienzos de los años 90, en concordancia con las emisiones totales (como suma de fuentes antropógenas y naturales), que han sido casi constantes durante ese período. El aumento de la concentración de N₂O procede principalmente de la agricultura. Con un grado de confianza muy alto, el efecto neto de las actividades humanas desde 1750 ha sido un aumento de la temperatura (IPCC, 2007).

Los humedales tropicales son uno de los ecosistemas más ricos en carbono del mundo. Los suelos ricos en compuestos orgánicos de muchos manglares y marismas contienen un almacén excepcionalmente grande, que pueden ser dos a tres veces más que lo estimado en otros bosques terrestres (INECC-PNUD, 2017).

En concreto, los manglares almacenan más carbono que otros ecosistemas, especialmente en los suelos: Los manglares tienen una reserva media de carbono de 956 T C ha, frente a 241 T C ha bosques tropicales húmedos de hoja perenne, 408 T C ha para pantanos de turba tropicales, 593 T C ha para marismas subtropicales y 142.2 T C ha para pastos marinos (INECC-PNUD, 2017).

A nivel regional en la península de Atasta en Campeche, reportaron BA de 206.07 T ha para *L. racemosa*, 161.93 T ha para *A. germinans* y 181.70 T ha en *R. mangle*. En la península de Yucatán, Adame et al. (2013) reportaron 5.3 T ha para *R. mangle* enano. Por otra parte, en Guyana Francesa, estimaron 31.5 T ha para *L. racemosa* de dos a tres años de edad, y 315 T ha para *A. germinans* y *R. mangle* de 60 a 70 años; mientras que, en África, encontraron 76 (en Benín) y 178 T ha (en

Congo) como promedio de la biomasa de diversas especies, entre ellas *A.* germinans, *L. racemosa* y *R. mangle* (Mendoza, 2018).

En Ecuador las emisiones totales del INGEI 2012 ascienden a 80'627,160 T de CO2 eq, de los cuales el sector Energía genera el mayor aporte con el 46.63% de dichas emisiones, seguido del sector Uso de Suelo, Cambio de Uso de Suelo y Silvicultura (USCUSS) con el 25.35% de las emisiones totales netas (valor neto resultante de las emisiones menos las absorciones). El tercer lugar lo ocupa el sector Agricultura con el 18.17% de los GEI emitidos a la atmósfera. Los sectores Procesos industriales У Residuos representan en conjunto el 10% aproximadamente de las emisiones del país, registrando el 5.67% y 4.19%, en cada caso (Guevara, 2016).

1.2 Planteamiento y formulación del problema

1.2.1 Planteamiento del problema

Debido a la presencia CO₂ en la atmosfera el cambio climático es evidente. Se observa deforestación, perdida de la biodiversidad y fragmentación de hábitats por estas razones es necesario preservar los ecosistemas de manglar debido a que cumple la función de absorber el CO₂ en el aire mediante la fotosíntesis (MAE, 2020).

En los procesos derivados al cambio en el uso del suelo y silvicultura, las actividades humanas, el uso de combustibles fósiles están ocasionando grandes emisiones de gases de efecto invernadero como lo es dióxido de carbono (CO₂), monóxido de carbono (CO), clorofluorocarbonados (CFC's), óxidos de nitrógeno (NOx) y metano (CH₄) (Bruno, 2019).

La Isla Santay presentaba problemas de deforestación y de perdida de hábitats debido a la sobreexplotación de la zona en actividades de ganadería y agricultura

especialmente el cultivo de arroz a cargo de las haciendas que habitaban la Isla hasta el año 1980, luego que la Isla Santay fuera declarada sitio Ramsar presentó cambios notables como recuperación del manglar y de diferentes ecosistemas presentes en la Isla, al día de hoy la Isla forma parte del Sistema Nacional de Áreas Protegidas del Ecuador. A pesar de que cuenta con un estricto cuidado no presenta estudios relacionados a sus ecosistemas ni los servicios ambientales que proporciona la isla, tampoco a su correcto aprovechamiento (Ministerio del Ambiente, 2011).

1.2.2 Formulación del problema

¿Qué cantidad de carbono capta el mangle rojo (*Rhizophora mangle*) en el área estudio del Área Nacional de Recreación en la Isla Santay?

1.3 Justificación de la investigación

La presente investigación tiene una notable importancia debido a que el ecosistema manglar captura un considerable porcentaje de CO₂ presente en la atmosfera, este gas de efecto invernadero contribuye de manera exponencial al cambio climático (Ministerio del Ambiente, 2019).

Además, el mangle es hábitat de diversidad de especies, principalmente aves, sirve de refugio para especies marinas como peces pelágicos, moluscos y crustáceos. Cuando el hábitat de manglar se destruye se pierden sin número de especies marítimas de importancia comercial. Debido a que se ubica en la interface marino-costera alberga especies terrestres y marinas además son hábitat de insectos (Gette, 2009).

El ecosistema mangle tiene un papel importante en la protección de las costas frente a eventos meteorológicos y climáticos, los bosques manglares aportan

nutrientes y carbono, este aporte sin duda implica un beneficio a las comunidades de especies marinas adyacentes (Gette, 2009).

Su importancia más relevante y el enfoque de esta investigación es conocer la cantidad de captura de carbono, el mangle actúa como sumidero de carbono secuestrando grandes cantidades presente en el ambiente, puede llegar a secuestrar aproximadamente hasta 25 tonelada de carbono por hectáreas el cual es emitido a la atmosfera de manera natural y antropogénica, por esta razón es necesario calcular la cantidad de carbono que retiene el mangle rojo (*Rhizophora mangle*) en el Área Nacional de Recreación Isla Santay (Martínez, 2016).

1.4 Delimitación de la investigación

El trabajo de investigación se ejecutará en el espacio y tiempo descrito a continuación:

- Espacio: Isla Santay la cual es un área protegida (Área Nacional de Recreación Isla Santay) y es parte del Sistema Nacional de Áreas Protegidas por el Ecuador debido a su gran biodiversidad y su categoría Ramsar, ubicada en ecuador en la provincia del Guayas cantón Duran en el curso del Río Guayas y frente a la ciudad de Guayaquil en las coordenadas 627505 – 9754718 17M. Las Isla Santay posee 2214 ha (Ministerio del Ambiente, 2011).
- Tiempo: El trabajo de investigación se ejecutó por el lapso de 5 meses donde se evaluó la cantidad de carbono que el mangle rojo (*Rhizophora* mangle) es capaz de capturar.
- Población: La Isla Santay cuenta con una población de manglares de aproximadamente 440 ha localizada mayormente en el parte oriental de la Isla. Se encuentran especies de mangle rojo (*Rhizophora mangle*), blanco

(Laguncularia racemosa), negro (Avicennia germinans) y jeli (Conocarpus erectus) (Ministerio del Ambiente, 2011).

1.5 Objetivo general

Calcular la cantidad de captura de carbono del mangle rojo (*Rhizophora mangle*) en el Área Nacional de Recreación Isla Santay mediante ecuaciones alométricas con fines de conservación.

1.6 Objetivos específicos

- Identificar las zonas de presencia de la especie de mangle rojo (Rhizophora mangle) mediante sistema de información geográfica.
- Determinar la cantidad de captura de carbono mediante ecuaciones alométricas y caracterización de la biomasa del mangle rojo (*Rhizophora mangle*) de la Isla Santay.
- Establecer un programa de divulgación de la importancia del mangle rojo (Rhizophora mangle) como sumidero de carbono en el Área Nacional de Recreación Isla Santay.

1.7 Hipótesis

La cantidad de captura de carbono del mangle rojo (*Rhizophora mangle*) es considerable como sumidero de carbono en el Área Nacional de Recreación Isla Santay.

2. Marco teórico

2.1 Estado del arte

Según Lara (2018) Los tipos de vegetación presentes en el área son: Bosques con alta densidad de palmas, Bosques de baja densidad de palmas, Bosques de manglar denso, Bosques abiertos dispersos, Vegetación herbácea y suelos desnudos aumentando y disminuyendo su cobertura en los últimos 54 años. El incremento de las coberturas más evidentes son las de bosque con alta densidad de palmas aumentando un 20% y la baja densidad de palmas con el 17% evidenciada a partir de los años 90, los bosques de manglar denso aumentaron del 23% al 25%, los bosques abiertos dispersos del 17% a 23%. Mientras que las disminuciones más evidentes fueron: la vegetación herbácea del 10% a 7% y los suelos desnudos del 36% a 5%.

Según Alongi (2014), Los manglares se encuentran entre las plantas más productivas del mar. Producción primaria neta promedio es 11.1 T C ha, con una asignación casi igual al follaje, la madera y la raíz. Las existencias de carbono a escala de ecosistema promedian 956 T C ha. Productividad mejorada y la asignación de carbono son equivalentes a las de los bosques tropicales húmedos de hoja perenne, pero Las reservas de carbono de los manglares, secuestradas principalmente en suelos, son mayores.

Según Alongi (2014), La suma de la respiración del dosel (425 T), la superficie (36 T C) y el subsuelo (86 T C) respiración del suelo y respiración en vías fluviales de manglares (30 T C) equivale a> 90% de la producción primaria bruta de manglar. El carbono restante (neto la producción del ecosistema de 90 T C y – 1), incluida la fijada por algas bentónicas, se almacena en la vegetación.

Según estudio realizado por Fromard (1998) donde se ha usado modelos de regresión para determinar la biomasa aérea de especies de manglar reportan que el DAP solo, o asociado con la altura (Ht), son las variables más importantes y relevantes en esta estimación.

Según Yepes (2015) La relación con los valores de biomasa aérea obtenidos, algunos estudios han sugerido que hay diferencias específicas entre las especies en la proporción de los componentes de la biomasa, especialmente en las especies que difieren en la arquitectura.

En este estudio, la variación encontrada en la proporción de los componentes de biomasa aérea de *R. mangle* y *A. germinans*, especialmente en el componente fuste, se debió en efecto a la diferencia en la arquitectura de estas especies. Específicamente, la especie del género *Rhizophora* tuvo una proporción considerable de carbono en las raíces aéreas.

Según Lacher (1977), la biomasa aérea puede oscilar entre 100 y 200 T/ha a nivel pantropical, rango en el cual se encuentra el valor estimado en el presente estudio (129.63 T/ha) Yepes (2015). No obstante, también es posible encontrar valores más altos o más bajos, como los que se presentan en el continente Africano, donde la biomasa aérea de los manglares puede variar entre 72 T/ha y 207 T/ha Fatoyinbo (2008), o en manglares de Indonesia y Malasia, que presentan biomasa aérea de más de 300 T/ha Ong (1981).

Según Fromard (1998), En América, se han reportado valores de biomasa aérea de 315.0 T/ha para los bosques maduros de la Guyana Francesa y de 5.3 T/ha para los bosques enanos de la península de Yucatán, México.

En el caso del presente estudio, el contenido de carbono encontrado para los bosques de manglar del DMI Cispatá en la biomasa aérea (64.85 ± 10.12 T C/ha),

estuvo entre los valores promedio reportados para los bosques de manglar a nivel mundial, y fue similar a los valores reportados para los bosques altos dominados por *R. mangle* en la península de Yucatán, México (69.6 T/ha) (Yepes, 2015).

Según estudio de Villalobos (2011), La especie (*Rhizophora mangle*) es la especie más dominante, abundante y frecuente y; está presente en todos los distanciamientos al borde del canal. Las reservas de carbono encontradas en estos manglares se encuentran dentro de los valores reportados para otros manglares del Indo-Pacífico. Las reservas de carbono encontradas en estos manglares superan valores reportados para bosques primarios y secundarios del Costa Rica.

Según Ramón (2017) en el estudio realizado en la Reserva de Producción Faunística Manglares del Salado de la Ciudad de Guayaquil se obtuvo en el primer transecto un total de 15 árboles con una estimación de captura de carbono de 850.35 T. En el segundo transecto 16 árboles registrados con un ingreso de captura de carbono de 758,71 T. Y en el tercer transecto 12 árboles con una estimación de carbono de 821,01 T dando un total de 43 árboles. El total de Estimación de Contenido de Carbono fue de 2430,20 T de dióxido de carbono CO₂, tomando un total de 43 árboles en el área estimada de estudio.

Según Bruno (2019) se determinó que la cantidad de CO2 almacenado en las especies de *Rhizophora mangle* ubicadas dentro del Refugio de Vida Silvestre Manglares del Estuario Río Esmeraldas, fue de 446,94 ton/ha de CO2 en un área de 1571 m², con un total de 60 árboles distribuidos en 6 transectos lo que equivale a una biomasa total de 909,52 ton/ha.

2.2 Bases teóricas

2.2.1 Cambio Climático

El cambio climático, según el artículo 1 de la Convención Marco de las Naciones Unidas sobre el Cambio Climático, se define como el "cambio de clima atribuido directa o indirectamente a la actividad humana que altera la composición de la atmósfera global y que se suma a la variabilidad natural del clima observada durante períodos de tiempo comparables" (Alongi D. M., 2009).

2.2.2 Efecto Invernadero

El término "efecto de invernadero" se refiere es la retención del calor del Sol en la atmósfera de la Tierra por parte de una capa de gases en la atmósfera. Sin ellos la vida tal como la conocemos no sería posible, ya que el planeta sería demasiado frío. Entre estos gases se encuentran el dióxido de carbono, el óxido nitroso y el metano, son emitidos por la industria, la agricultura y la combustión de combustibles fósiles (Gobierno de España, 2016).

2.2.3 Gases de Efecto Invernadero

Los gases de efecto invernadero, conocidos como GEI, son aquellos gases que se acumulan en la atmósfera terrestre y que son capaces de absorber la radiación infrarroja del Sol, aumentando y reteniendo el calor en la atmósfera. Los gases presentes en la atmósfera que dan lugar al efecto invernadero de la radiación solar que llega al planeta, 1/3 es reflejada al espacio y el resto absorbida por las diferentes capas del planeta (hidrosfera, litosfera, atmosfera). La radiación que procede del sol es de onda larga, mientras que la que refleja la tierra es de onda corta, tipo infrarrojos (desprenden calor); parte de este calor es absorbido por determinados gases de efecto invernadero (GEI) críticos para el desarrollo de la vida en la Tierra (Comisión Nacional de Áreas Naturales Protegidas, 2013).

2.2.4 Carbono azul

Es el carbono almacenado por ecosistemas marinos y costeros que pueden ser como el fitoplancton, macroalgas fotosintéticas, bacteria, fanerógamas, arrecifes de coral, marismas de marea, praderas oceánicas, bosques de manglar, y otros humedales, estos almacenan por más tiempo el carbono y una mayor cantidad (Solaun K., 2013).

2.2.5 Biomasa forestal

La biomasa abarca todo un conjunto heterogéneo de materias orgánicas, tanto por su origen como por su naturaleza. En el contexto energético, el término biomasa se emplea para denominar a una fuente de energía renovable basada en la utilización de la materia orgánica formada por vía biológica en un pasado inmediato o de los productos derivados de ésta (Fernández, 2012).

2.2.6 Ecosistema manglar

Son ecosistemas dominados por árboles - denominados mangles - con adaptaciones especiales, con entre 4 y 5 especies diferentes, que crecen en condiciones de anegamiento por el mar y por cuerpos de agua que desembocan en él. Las especies de mangles en general poseen adaptaciones morfológicas que les permiten ocupar suelos inestables, y adaptaciones morfofisiológicas para tolerar ambientes salinos y salobres e intercambiar gases en substratos con bajas concentraciones de oxígeno (Martínez, 2016).

2.2.6.1 Mangle negro (Avicennia germinans)

El Mangle Negro es un árbol pequeño o arbusto de gran talla, perenne, generalmente de 2 a 8 m de altura, en algunos casos hasta 30 m. Su tronco mide de 20 a 60 cm de diámetro. Sus raíces son superficiales, crecen erectas y saliendo del agua alrededor del tronco principal, y están modificadas (neumatóforos) para

permitir la absorción de oxígeno en suelos pantanosos. Su corteza tiene fisuras pequeñas y es rojiza en el interior (CONABIO, 2009).

2.2.6.2 Mangle rojo (Rhizophora mangle)

Rhizophora mangle L., comúnmente conocido como mangle rojo, debido al color de su madera, es un árbol perene considerado como una especie rara debido a lo restringido de su hábitat circunscrito a la zona intermareal en lagunas costeras y bahías protegidas de la acción física del oleaje y mareas (Salazar, 2013).

Taxonomía

- Reino. Plantae
- Phyllum. Plantae
- **Subphyllum.** Spermatophyta
- Clase. Magnoliophytina
- Subclase. Magnoliopsida
- Orden. Rosidas
- Familia. Mirtales
- Subfamilia. Rizoforaceas
- Genero. Rhizophora
- Especie. R. mangle (Sistema Nacional de Informacion Forestal, 2012)

Forma. Arbol o arbusto perennifolio, halófito, de 1.5 a 15 m (hasta 30 m) de altura con un diámetro a la altura del pecho de hasta 50 cm.

Copa / Hojas. Copa redondeada. Hojas opuestas, simples, pecioladas, elípticas a oblongas, aglomeradas en las puntas de las ramas, de 8 a 13 cm de largo por 4 a 5.5 cm de ancho, coriáceas, lisas, gruesas; verde oscuras en el haz y amarillentas con puntos negros en el envés. (Research, 2016)

Tronco / Ramas. Tronco recto. Ramas apoyadas en numerosas raíces aéreas de origen adventicio, simples o dicotómicamente ramificadas, con numerosas lenticelas.

Corteza. *Externa* de color olivo pálido con manchas grises, pero si se raspa adquiere un color rojo, inolora, amarga, dura, de textura lisa a rugosa y apariencia fibrosa, se desprende fácilmente en escamas. *Interna* de color rojo intenso, granulosa (con alto contenido de fibras y esclereidas). La corteza forma lenticelas hipertrofiadas en las partes sumergidas de tallos y raíces. Grosor total: 20 a 30 mm.

Flor(es). Inflorescencias simples, con 2 ó 3 flores, pedúnculos de 3 a 5 cm, flores actinomórficas; corola de 1.8 cm de diámetro; cáliz de 1.54 cm de diámetro; sépalos 4, persistentes, amarillos, coriáceos, gruesos, de 4.1 mm de ancho; pétalos 4 no persistentes, blancos o amarillentos en la base y moreno rojizos arriba, de 2.6 mm de ancho. (Cumana, 2010)

Fruto(s). Baya de color pardo, coriácea, dura, piriforme, farinosa, de 2 a 3 cm de largo por 1.5 cm de ancho en la base, cáliz persistente. Se desarrolla una semilla, rara vez dos, por fruto.

Semilla(s). Una sola semilla germina en el interior del fruto (viviparidad). Los propágulos son frecuentemente curvos, de color verde a pardo en la parte inferior y presentan numerosas lenticelas. Miden de 22 a 40 cm de largo por 1 a 2 cm de diámetro en su parte más ancha y pesan aproximadamente 50 g. (Ribón, 2015)

Raíz. Raíces fulcreas, ramificadas, curvas y arqueadas. Destacan las modificaciones de sus raíces en prolongaciones aéreas del tallo como zancos o prolongaciones cortas que emergen del suelo llamadas neumatóforos (Sistema Nacional de Informacion Forestal, 2012).

2.2.6.3 Mangle blanco (Laguncularia racemosa)

El mangle blanco es un arbusto o árbol generalmente pequeño de hasta 20 metros de alto por 60 cm de diámetro. Su tronco es recto con ramas ascendentes, copa redondeada y densa. Las ramas jóvenes son ligeramente aplanadas de color

pardo moreno. Su madera no es durable, es medianamente pesada y difícil de trabajar por su tendencia a deformarse y rajarse. Su corteza externa es gris oscuro a rojiza y se parte en pequeñas placas. La corteza interna es de color rosa a rojo oscuro, cambia a pardo rojizo y exuda un líquido rojizo. La parte interna del tronco (albura) es de color pardo amarillento o crema rojizo (CONABIO-CONANP, 2009).

2.2.7 Isla Santay

Las islas Santay se encuentran ubicadas en la provincia del Guayas, Cantón Duran; en el curso del Río Guayas y frente a la ciudad de Guayaquil. Las Isla Santay y Gallo poseen 2214 ha. La Isla Santay está habitada por 57 familias que suman 229 personas. Es un área que hasta el año 1980 estuvo dedicada, principalmente a la ganadería y al cultivo de arroz. La isla posee planicies que se encharcan durante la estación lluviosa, que eran típicas en la llanura de inundación de la cuenca baja del río Guayas (Ministerio del Ambiente, 2011).

El humedal Isla Santay corresponde a dos islas de formación sedimentaria y un tramo del río Guayas, localizadas en el inicio del estuario del río Guayas que tiene una longitud de 60 km hasta su descarga en el Golfo de Guayaquil. La isla Santay es de propiedad del Banco Ecuatoriano de la Vivienda entidad del Ministerio de Desarrollo Urbano y Vivienda quien ha constituido un fideicomiso para su manejo. Está bajo la jurisdicción política del Municipio de Durán, en la provincia del Guayas y es administrada por la Fundación Malecón 2000. Actualmente la isla es habitada por 200 personas, la mayor parte adultos que trabajaron o nacieron en las antiguas haciendas de la isla (Carvajal, 2019).

En el tramo inicial del estuario, destaca la Isla Santay que representa el 46% de la superficie del humedal (4.705 ha) y es un área que hasta el año 1980 estuvo dedicada, principalmente a la ganadería y al cultivo de arroz. La isla posee los

primeros bosques de manglar del inicio del estuario del río Guayas, conserva una muestra de planicies que se encharcan durante la estación lluviosa, que eran típicas en la llanura de inundación de la cuenca baja del río Guayas, y ha recuperado en aproximadamente 15 años la vegetación típica de bosque seco y matorral espinoso periódicamente inundado, que era común en las planicies de la provincia del Guayas (Jaramillo, 2008).

2.2.8 Método de transectos

El método de los transectos es ampliamente utilizado por la rapidez con se mide y por la mayor heterogeneidad con que se muestrea la vegetación. Un transecto es un rectángulo situado en un lugar para medir ciertos parámetros de un determinado tipo de vegetación. El tamaño de los transectos puede ser variable y depende del grupo de plantas a medirse (Mostacedo, 2000).

2.2.9 Método de transectos variables

Este método es una variante de los transectos y fue propuesto por Foster et al. (1995), para realizar evaluaciones rápidas de la vegetación.

Este método tiene como base muestrear un número estándar de individuos en vez de una superficie estándar y no requiere tomar medidas precisas de los datos. El método consiste en muestrear un número determinado de individuos a lo largo de un transecto con un ancho determinado y el largo definido por el número estándar de individuos a muestrearse (Mostacedo, 2000).

2.2.10 Ecuaciones alométricas

Las ecuaciones alométricas emplean el diámetro a la altura del pecho (DBH) como la única variable independiente y establecen una relación entre esta variable y los componentes de la biomasa del árbol. Algunos estudios proponen incluir la altura de los árboles (H) como la segunda variable predictora y desarrollan

37

ecuaciones con variables combinadas de DBH-H para mejorar la precisión de la

estimación de la biomasa (Gomez, 2011).

2.3 Marco legal

2.3.1 Ley de la Constitución de la República del Ecuador 2008

Título I: Elementos constitutivos del Estado

Capítulo segundo: Derechos del buen vivir

Sección segunda: Ambiente sano

Art. 14.- Se reconoce el derecho de la población a vivir en un ambiente sano y

ecológicamente equilibrado, que garantice la sostenibilidad y el buen vivir, sumak

kawsay. Se declara de interés público la preservación del ambiente, la

conservación de los ecosistemas, la biodiversidad y la integridad del patrimonio

genético del país, la prevención del daño ambiental y la recuperación de los

espacios naturales degradados.

Sección sexta: Hábitat y vivienda

Art. 31.- Las personas tienen derecho al disfrute pleno de la ciudad y de sus

espacios públicos, bajos los principios de sustentabilidad, justicia social, respeto a

las diferentes culturas urbanas y equilibrio entre lo urbano y lo rural. El ejercicio del

derecho a la ciudad se basa en la gestión democrática de esta, en la función social

y ambiental de la propiedad y de la ciudadanía.

Título VII: Régimen del Buen Vivir

Capítulo segundo: Biodiversidad y recursos naturales

Sección primera: Naturaleza y ambiente

Art. 397.- En caso de daños ambientales el Estado actuará de manera inmediata y

subsidiaria para garantizar la salud y la restauración de los ecosistemas. Además

de la sanción correspondiente, el Estado repetirá contra el operador de la actividad

que produjera el daño las obligaciones que conlleve la reparación integral, en las condiciones y con los procedimientos que la ley establezca. La responsabilidad también recaerá sobre las servidoras o servidores responsables de realizar el control ambiental.

Para garantizar el derecho individual y colectivo a vivir en un ambiente sano y ecológicamente equilibrado, el Estado se compromete a: Asegurar la intangibilidad de las áreas naturales protegidas, de tal forma que se garantice la conservación de la biodiversidad y el mantenimiento de las funciones ecológicas de los ecosistemas. El manejo y administración de las áreas naturales protegidas estará a cargo del Estado.

Sección segunda: Biodiversidad

Art. 400.- El Estado ejerce la soberanía sobre la biodiversidad, cuya administración y gestión se realizará con responsabilidad intergeneracional. Conforme al artículo 403, el Estado no se comprometerá en Convenios o Acuerdos de cooperación que incluyan cláusulas que menoscaben la conservación, el manejo sustentable de la biodiversidad, la salud humana y los derechos colectivos de la naturaleza.

Art. 404.- El patrimonio natural del Ecuador, único e invaluable comprende, entre otras, las formaciones físicas, biológicas y geológicas cuyo valor desde el punto de vista ambiental, científico o paisajístico exige su protección, conservación, recuperación y promoción. Su gestión se sujetará a los principios y garantías consagrados en la Constitución y se llevará a cabo de acuerdo al ordenamiento territorial

Art. 405.- Es sistema nacional de áreas protegidas garantizará la conservación de la biodiversidad y el mantenimiento de las funciones ecológicas. El sistema se integrará por los subsistemas estatal, autónomo descentralizado, comunitario y

privado, y su rectoría y regulación será ejercida por el Estado. El Estado asignará los recursos económicos necesarios para la sostenibilidad financiera del sistema, y fomentará la participación de las comunidades, pueblos y nacionalidades que han habitado ancestralmente las áreas protegidas en su administración y gestión.

Las personas naturales o jurídicas extranjeras no podrán adquirir ningún título tierras o concesiones en las áreas de seguridad nacional ni en áreas protegidas, de acuerdo con la ley.

Art. 406.- El Estado regulará la conservación, manejo y uso sustentable, recuperación, y limitaciones de dominio de los ecosistemas frágiles y amenazados; entre otros, los parámetros, humedales, bosques nublados, bosques tropicales secos y húmedos y manglares, ecosistemas marinos y marinos- costeros.

Sección séptima: Biosfera, ecología urbana y energía alternativas

Art. 414.- El Estado adoptará medidas adecuadas y transversales para la mitigación del cambio climático, mediante la limitación de las emisiones de gases de efecto invernadero, de la deforestación y de la contaminación atmosférica; tomará medidas para la conservación de los bosques y la vegetación, y protegerá a la población en riesgo.

2.3.2 Convenio sobre la Diversidad Biológica: 1992

La República del Ecuador suscribió el Convenio sobre Diversidad Biológica, instrumento internacional cuyo "*Programa de Trabajo sobre Áreas Protegidas*" y el Mandato de Jakarta incluyen un eje dedicado a las áreas marinas y costeras protegidas, en el cual se reconoce la importancia de estos espacios y se promueve su manejo integral y sustentable con miras a crear y fortalecer sistemas nacionales y crear redes de conservación a nivel regional y global.

Su objetivo primordial es la conservación de la diversidad biológica, la utilización sostenible de sus componentes y la participación justa y equitativa de los beneficios que se deriven de la utilización de los recursos genéticos. Manda a cada país miembro a establecer un sistema de áreas protegidas, ordenación de las áreas, desarrollo de zonas adyacentes y preservación y mantenimiento de conocimientos, innovaciones y prácticas de las comunidades indígenas y locales que respeten estilos tradicionales de vida para la conservación y utilización sostenible de la biodiversidad.

2.3.3 Convención sobre el Comercio Internacional de las Especies Amenazadas de Flora y Fauna Silvestres (CITES): 1975.

Establece normas para el control y monitoreo del tráfico de vida silvestre de especies en peligro de extinción, y regula el comercio de vida silvestre a través de un sistema de permisos y certificados para la importación y exportación de especímenes.

2.3.4 La Conferencia de las Partes (COP)

La Conferencia de las Partes (COP) es un evento anual celebrado desde 1994, donde las partes participantes – gobiernos, científicos, organizaciones privadas y académicos – se reúnen a discutir, acordar e implementar medidas para el cuidado ambiental y la lucha contra el cambio climático.

2.3.5 Convenio de la Tierra de Río de Janeiro.

Es un tratado internacional en el que se trató entre otras cosas la necesidad de minimizar las emisiones de gases de efecto invernadero, fueron ratificados en la Cumbre, la Declaración de Principios relativos a los Bosques y el Convenio sobre la Diversidad Biológica. Después de la cumbre Río en 1992, se llevó a cabo la

Cumbre de la Tierra Río+20, se celebró del 20 al 22 de junio de 2012 en Brasil., incluyo lo siguiente: 1. El fortalecimiento de los compromisos políticos en favor del desarrollo sustentable. 2. El balance de los avances y las dificultades vinculados a su implementación. 3. Las respuestas a los nuevos desafíos emergentes de la sociedad.

2.3.6 Convención relativa a los Humedales de importancia internacional, especialmente como hábitat de aves acuáticas, RAMSAR.

Publicado en el **Registro Oficial No. 647 de 6 de marzo de 1995**. En su Art. 1 se establece: "Los objetivos del presente Convenio, que se han de perseguir de conformidad con sus disposiciones pertinentes, son la conservación de la diversidad biológica, la utilización sostenible de sus componentes y la participación justa y equitativa en los beneficios que se deriven de la utilización de los recursos genéticos, mediante, entre otras cosas, un acceso adecuado a esos recursos y una transferencia apropiada de las tecnologías pertinentes, teniendo en cuenta todos los derechos sobre esos recursos y a esas tecnologías, así como mediante una financiación apropiada."

Firmada en la ciudad de Ramsar, Irán en 1971, fue ratificada por Ecuador el 7 de enero de 19914 (Registro Oficial No. 33 del 24 de septiembre de 1992). Persigue la conservación de los humedales como protección de los hábitats de especies bioacuáticas.

En octubre del 2000 la Isla Santay fue declarada por la Convención Ramsar como un humedal de importancia internacional.

2.3.7 Ley Forestal y de Conservación de Áreas Naturales y Vida Silvestre codificada.

Esta Ley se regula el Patrimonio Nacional de Áreas Naturales; establece categorías: parques nacionales, reservas ecológicas, refugio de vida silvestre, reservas biológicas, áreas naturales de recreación, reserva de producción de fauna, áreas de caza y pesca; determina las responsabilidades del Ministerio del Ambiente: planificación, manejo, desarrollo, administración, protección y control, establece actividades permisibles en su interior, incluye mecanismos de financiamiento de los programas forestales, tipifica infracciones a la ley y su juzgamiento.

Conforme al artículo 4 de la Ley Forestal y de Conservación de Áreas Naturales y Vida Silvestre, la administración del patrimonio forestal del Estado estará a cargo del Ministerio del Ambiente, a cuyo efecto en el respectivo reglamento se darán las normas para la ordenación, conservación manejo y aprovechamiento de los recursos forestales y los demás que estimen necesarios.

De conformidad con lo dispuesto en el Artículo 66, segundo inciso, de la Codificación de la Ley Forestal y de Conservación de Áreas Naturales y Vida Silvestre, corresponde al Ministerio del Ambiente la determinación y delimitación de las áreas naturales protegidas, fundamento jurídico básico en razón del cual se dictó el Acuerdo Ministerial de creación del Área Nacional de Recreación Isla Santay.

Conforme al artículo 69 de la Ley Forestal y de Conservación de Áreas Naturales y Vida Silvestre, la planificación, manejo, desarrollo, administración y control del patrimonio de las áreas naturales protegidas estarán a cargo del Ministerio del Ambiente.

2.3.8 Ley que protege La Biodiversidad

Promulgada el 27 de septiembre de 1996, declara como bienes nacionales de uso público, las especies que integran la diversidad biológica del país, y regula la explotación comercial en base a las leyes y reglamentos especiales dictados por el Presidente de la República.

Establece una fuerte protección jurídica al señalar que se considerarán bienes nacionales de uso público, las especies que integran la diversidad biológica del país, esto es, los organismos vivos de cualquier fuente, los ecosistemas terrestres y marinos, los ecosistemas acuáticos y los complejos ecológicos de los que forman parte. El Estado Ecuatoriano tiene el derecho soberano de explotar sus recursos en aplicación de su propia política ambiental. Su explotación comercial se sujetará a las leyes vigentes y a la reglamentación especial, que para este efecto, dictará el Presidente Constitucional de la República, garantizando los derechos ancestrales.

2.3.9 Ley de Gestión Ambiental

Promulgada el 30 de Julio de 1999 mediante Registro Oficial No. 245; establece los principios y directrices generales de la política ambiental; determina las obligaciones, responsabilidades, niveles de participación de los sectores público y privado en la gestión ambiental y señala los límites permisibles, controles y sanciones en esta materia.

2.3.10 Ley para la Preservación de Zonas de Reserva y Parques Nacionales (Codificación 2004-018 Suplemento del Registro Oficial 418, 10-IX-2004; Ley s/n -Suplemento del Registro Oficial 544, 9-III-2009), establece el marco general para la actividad productiva (turística, pesquera) dentro de las Áreas Naturales Protegidas, así como el procedimiento ágil para aplicar sanciones en caso de

44

contravenciones no graves. Esta normativa nacional debe ser de permanente

consulta para efectos de la administración del Área Protegida.

2.3.11 Código Orgánico del Ambiente.

Libro Preliminar

Título II: De los derechos, deberes y principios ambientales

Libro segundo: Del patrio

Título I: De la conservación de la biodiversidad

Art. 4.- Disposiciones comunes. Las disposiciones del presente Código

promoverán el efectivo goce de los derechos de la naturaleza y de las personas,

comunas, comunidades, pueblos, nacionalidades y colectivos a vivir en un

ambiente sano y ecológicamente equilibrados, de conformidad con la Constitución

y los instrumentos internacionales ratificados por el Estado, los cuales son

inalienables, irrenunciables, indivisibles, de igual jerarquía, interdependiente,

progresivos y no se excluyen entre sí.

Para asegurar el respeto, la tutela y el ejercicio de los derechos se desarrollarán

las garantías normativas, institucionales y jurisdiccionales establecidas por la

Constitución y la Ley. Las herramientas de ejecución de los principios, derechos y

garantías ambientales son de carácter sistémico y transversal.

Art. 29. Regulación de la biodiversidad. El presente título regula la conservación

de la biodiversidad, el uso sostenible de sus componentes. Asimismo, regula la

identificación, el acceso y la valoración de los bienes y los servicios ambientales.

La biodiversidad es un recurso estratégico del Estado, que deberá incluirse en la

planificación territorial nacional y de los gobiernos autónomos descentralizados

como un elemento esencial para garantizar un desarrollo equitativo, solidario y con

responsabilidades intergeneracional en los territorios.

2.3.12 Código Orgánico Integral Penal.

Capítulo Cuarto: Delitos contra el ambiente y la naturaleza y Pacha Mama

Sección primera: Delitos contra la biodiversidad

Art. 247.- La persona que cace, pesque, capture, recolecte, extraiga, tenga, transporte, trafique, se beneficie, permite o comercialice, especímenes o sus partes, sus elementos constitutivos, productos y derivados, de flora y fauna silvestre terrestre, marina o acuática, de especies amenazadas en peligro de extinción y migratorias, listadas a nivel nacional por la Autoridad Ambiental Nacional, así como instrumentos o tratados internacionales ratificados por el Estado, será sancionada con pena privativa de libertad de uno a tres años.

2.3.13 Código Orgánico de Organización Territorial Autonomía

Descentralización.

Título III: Gobiernos Autónomos Descentralizados

Capítulo IV: Gobierno Autónomo Descentralizado Parroquial Rural

Sección Primera: Naturaleza jurídica, sede y funciones

Art.- 63.- Naturaleza jurídica, los gobiernos autónomos descentralizados parroquiales rurales son personas jurídicas de derecho público, con autonomía política, administrativa y financiera. Estarán integrados por los órganos previstos en este Código para el ejercicio de las competencias que les corresponden.

3. Materiales y métodos

3.1 Enfoque de la investigación

3.1.1 Tipo de investigación

Investigación de documental

La siguiente investigación es de tipo documental porque se realizó una profunda búsqueda de documentos de estudios realizados relacionados al tema del carbono azul en el mangle rojo.

Investigación de campo

Es investigación de campo porque se realizó visitas al área de estudio con el fin de recolectar los datos e información necesaria para la realización del presente trabajo como es la biomasa, altura, área basal, volumen y Diámetro a la altura del pecho (DAP).

El nivel de conocimiento de la investigación es descriptivo debido a que se procedió a detallar mediante los datos obtenidos y con un análisis descriptivo cada variable que se midió en la investigación.

También es explicativa debido a que ya obtenidos los datos del cálculo de carbono captado por el mangle rojo (*Rhizophora mangle*), se explicaron para que estos sean comprendidos de mejor manera.

3.1.2 Diseño de investigación

El diseño de la investigación es no experimental debido a que no se manipuló las variables para la obtención de resultados, sino que se recolectó datos de los árboles de mangle para la determinación de la cantidad de captura de los mismos.

3.2 Metodología

3.2.1 Variables

3.2.1.1. Variable independiente

Las variables independientes son el área basal del mangle rojo (*Rhizophora mangle*) (m²/ha), la biomasa total aérea (t/ha), volumen del árbol (m³ /ha), biomasa total de fuste (t/ha) y la altura total (m).

3.2.1.2. Variable dependiente

La variable dependiente es la cantidad de captura de carbono t del mangle rojo (*Rhizophora mangle*), en el Área Nacional de Recreación Isla Santay.

3.2.2 Recolección de datos

3.2.4.1. Recursos

Los recursos que se utilizó en el siguiente trabajo de investigación son los siguientes:

- Recursos bibliográficos
 - > Tesis
 - Libros
 - > Artículos científicos
 - Páginas web de instituciones
 - Mapas
 - Imágenes satelitales
- Recursos tecnológicos
 - > Laptop
 - Impresoras
 - > USB
 - Cámara

Equipos

- > GPS
- Distanciómetro
- ➤ EPP
- > Embarcación

Materiales

- Hoja de papel A4
- Esferos
- Cinta métrica

3.2.4.2. Métodos y técnicas

Identificación de las zonas de presencia de la especie de mangle rojo (*Rhizophora mangle*) mediante sistema de información geográfica. Se hizo mediante una visita de campo ayudado de imágenes satelitales y estudios realizados en la isla donde se determinó las zonas de mayor presencia de mangle rojo (*Rhizophora mangle*), se procedió a delimitar el área de estudio donde se delimitó los transectos. Luego se procedió con la identificación de la zona de muestreo en los puntos previamente determinados según la influencia de mareas en la zona para poder acceder a la toma de muestra (INOCAR, 2020).

El método de muestreo que se utilizó fue el método de transectos, se eligieron a 60 árboles con un diámetro no menor a 10 cm, esta medida es la óptima para la correcta realización de la metodología. Para la determinación del sitio donde se tomaron las muestras se utilizó imágenes satelitales y mapas de cobertura vegetal que fueron procesados por el programa ARGIS (Zapata, 2015).

Determinación de la capacidad de captura de carbono mediante ecuaciones alométricas y caracterización de la biomasa del mangle rojo (*Rhizophora mangle*) de la Isla Santay. Se realizó mediciones de los árboles en los puntos de muestreos como su altura mediante un distanciómetro y el Diámetro de Altura al Pecho (DAP) que se realizó con una cinta métrica. Posteriormente se calculó las ecuaciones alometricas que es el punto clave de esta investigación para poder calcular la cantidad de carbono capturado por el mangle rojo (*Rhizophora mangle*).

Se procedió a realizar una estadística descriptiva para una mejor comprensión de los resultados obtenidos en las ecuaciones, aplicando medidas de concentración y distribución, también se obtuvo gráficos para verificar la distribución de los transectos.

Con los resultados obtenidos se estableció en un programa de divulgación de la importancia del mangle rojo (*Rhizophora mangle*) como sumidero de carbono en el Área Nacional de Recreación Isla Santay, elaborando un plan educativo y poniéndolo a disposición del Ministerios del Ambiente para que sea proporcionado a las personas de la eco aldea y a los turistas que visiten la Isla resaltando la importancia del mangle en base a los resultados obtenidos en el estudio. También se pone a disposición los resultados del estudio para que sean considerados en posible actualización de Plan de Manejo de la Isla.

3.2.3 Análisis estadístico

El análisis estadístico que se utilizó en esta investigación es descriptivo se obtuvieron medidas de concentración como promedio, desviación estándar, coeficiente de variación, máxima y mínima de las variables área basal, volumen del árbol, biomasa total aérea, biomasa total del fuste y a los datos de carbono total obtenidos mediante el cálculo de las ecuaciones alometricas (Bruno, 2019).

Altura del árbol: la altura se determinó mediante un distanciómetro láser, de esta manera se obtuvo los valores de altura de los árboles a muestrear.

Se usó un equipo marca Jonhson 40-6001 que tiene un alcance de 40 metro, óptimo para la toma de altura del mangle rojo en el área de estudio utilizando la función de medición indirecta con el teorema de Pitágoras que tiene incluido el equipo.

Área basal del árbol: el área basal de un árbol se calculó con la siguiente fórmula propuesta por (Tapias, 1979).

Formula 1

$$AB = \frac{\pi * DAP^2}{4}$$

Donde:

 $AB = \text{Área basal (m}^2\text{)}$

 π = 3,1416

DAP= Diámetro de altura al pecho

Volumen del árbol: para hallar el volumen del árbol se aplicó la siguiente formula según (Brown, 1997).

Formula 2

$$V = AB * f * h$$

Donde:

V = Volumen del árbol (m³)

 $AB = \text{Área basal (m}^2)$

f = Factor de forma (0.5)

h = Altura total (m)

Biomasa total del fuste

La biomasa total del fuste se obtuvo calculando la suma de las diferentes biomasas como la del tronco, ramas, aérea. En esta especie de mangle no se considera en los métodos de regresión a la biomasa de las hojas (Peña, 2010).

Formula 3

$$Btf = BT + BR + BH + BA$$

Btf= Biomasa total del fuste (t/ha)

BT = Biomasa tronco = 6,73694+1,62817*DAP

BR = Biomasa ramas = 0.05620 + 4.38617*DAP

BA= Biomasa aérea =6,15105+2,11882*DAP

Biomasa total aérea

La biomasa total aérea se obtuvo con la siguiente formula donde la biomasa total del fuste obtenida en la fórmula 3 se multiplica con el factor de expansión de biomasa (1,75 t/ha) (Quiceno, 2015).

Formula 4

$$Bt = Btf * Feb$$

Btf= Biomasa total del fuste (t/ha)

Feb = Factor de expansión de biomasa (1,75 t/ha)

Estimación de carbono total almacenado en biomasa

Mediante los datos que se obtuvo en las fórmulas anteriores se procedió a calcular la estimación de carbono total almacenado por el mangle rojo multiplicando la biomasa total en t/ha por la fracción de carbono en biomasa que es 0.5 (Quiceno, 2015).

Formula 5

$$CT = Bt * Fc$$

CT= Carbono total (t)

Bt = Biomasa total (t/ha)

Fc= Fracción de carbono en biomasa (0.5)

4. Resultados

4.1 Identificación de las zonas de presencia de la especie de mangle rojo (*Rhizophora mangle*) mediante sistema de información geográfica

Mediante el uso de herramientas y sistemas de información geográfica se identificó las zonas de presencia de mangle rojo (*Rhizophora mangle*). Se utilizó una imagen satelital LANDSAT 8 de fecha julio del 2019 que presentaba las características óptimas para la correcta identificación del mangle rojo, se posicionaron las coordenadas sobre la imagen satelital que identificaba las diferentes áreas presentes en la isla como deforestadas, bosque seco/palma, herbazal, cuerpos de agua, mangle y mangle rojo. Luego se procedió a realizar la clasificación supervisada, mapa de cobertura vegetal y la determinación de la extensión de área (ha) perteneciente al mangle rojo en el Área Nacional de Recreación Isla Santay que correspondió a un total de 250.74 ha.

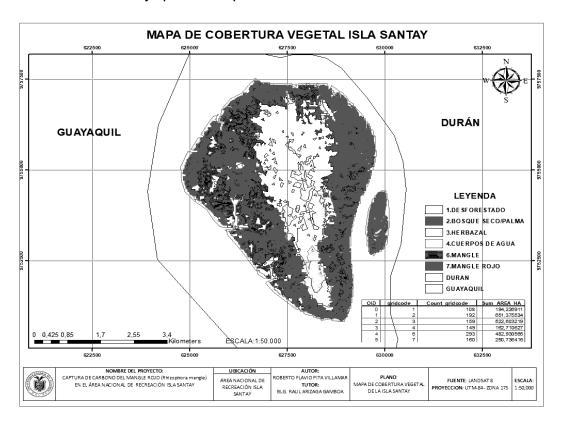


Figura 1. Mapa de Cobertura Vegetal Pita, 2020

Según el resultado obtenido en el mapa de cobertura vegetal y visita de campo se determinó el área de muestreo de 1 ha distribuidos en 5 transectos de 20m*100m ubicados en la parte Este de la isla posicionados de manera paralela en referencia a la orilla debido a que el mangle rojo tiene mayor predominancia en la primera línea de costa.

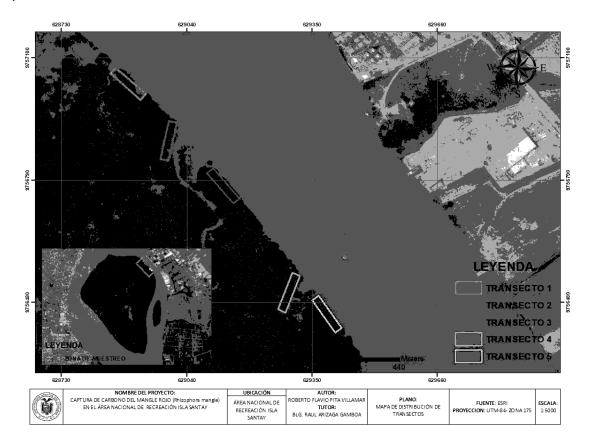


Figura 2. Mapa de Distribución de Transectos Pita, 2020

4.2 Determinación de la cantidad de captura de carbono mediante ecuaciones alométricas y caracterización de la biomasa del mangle rojo (*Rhizophora mangle*) de la Isla Santay.

Se realizó el muestreo de 60 árboles de mangle rojo distribuidos en 5 transectos donde se obtuvo valores de altura y DAP con sus respectivas coordenadas. En base a estos valores muestreados se aplicó las fórmulas detalladas en la metodología obteniendo los siguientes resultados para cada variable.

4.2.1 Área basal del árbol (m²/ha)

El área basal del árbol se determinó con los datos de DAP obtenidos en el campo dentro de cada transecto aplicando la fórmula 2 descrita anteriormente.

Tabla 1. Resultados Estadísticos del Área Basal

Transectos	Transecto 1	Transecto 2	Transecto 3	Transecto 4	Transecto 5	Totales
N° de árb	9	11	15	13	12	60
Promedio	0,0161	0,0167	0,0201	0,0200	0,0170	0,0180
Dev. Est.	0,0051	0,0046	0,0055	0,0063	0,0050	0,0053
Máxima	0,0259	0,0268	0,0296	0,0306	0,0259	0,0306
Mínima	0,0081	0,0097	0,0115	0,0109	0,0097	0,0081
Co. Var	32,00%	27,62%	27,18%	31,54%	29,24%	29,52%

Pita, 2020

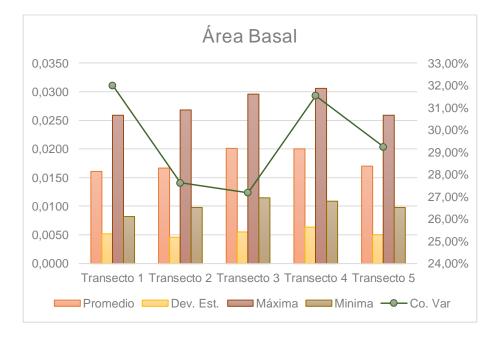


Figura 3. Resultados del Área Basal del Árbol Pita, 2020

El valor promedio más significativo de área basal se registró en el transecto 3 con un valor de 0.0201 m²/ha con una variabilidad del 27, 18% y el más bajo en el transecto 1 con un valor de 0.0161 m²/ha acompañado de una variabilidad del 32%, de igual manera cabe recalcar que el valor máximo registrado de área basal corresponde al transecto 4 con 0.0306 m²/ha y un mínimo de 0.0081 m²/ha en el transecto 1.

4.2.2 Volumen del árbol (m³/ha)

La variable volumen del árbol fue determinada mediante datos de altura obtenidos en el campo, el factor de forma (0.5) y aplicando la fórmula 2.

Tabla 2.Resultados Estadísticos del Volumen del Árbol

Transectos	Transecto 1	Transecto 2	Transecto 3	Transecto 4	Transecto 5	Totales
N° de árb	9	11	15	13	12	60
Promedio	0,0594	0,0779	0,1164	0,1339	0,0946	0,0964
Dev. Est.	0,0351	0,0377	0,0526	0,0727	0,0555	0,0507
Máxima	0,1382	0,1666	0,2175	0,2632	0,1888	0,2632
Minima	0,0174	0,0206	0,0324	0,0461	0,0251	0,0174
Co. Var	59,1%	48,5%	45,2%	54,3%	58,6%	53,1%

Pita, 2020

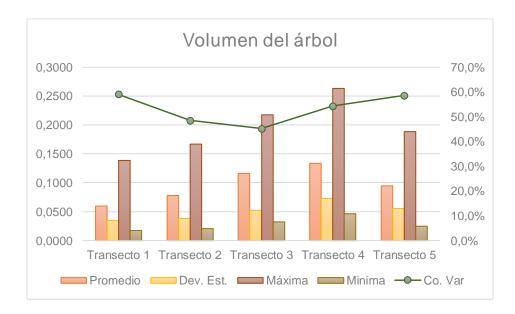


Figura 4. Resultados del Volumen del Árbol Pita, 2020

En el transecto 4 se registró un mayor promedio de volumen con un valor representativo de 0.1330 m³/ha y el promedio mínimo en el transecto 1 con un 0.0594 m³/ha mientras que sus porcentajes de variabilidad fueron de 54,3% y 59.1% respectivamente de igual manera sucede con sus valores máximos registrados con un 0.2632 m³/ha para el transecto 4 y un valor mínimo de 0.0174 m³/ha para el transecto 1. Es preciso señalar que el transecto 3 presentó una menor variabilidad del 45,2%.

4.2.3 Biomasa total del fuste (t/ha)

Para determinar esta variable se utilizó los valores de biomasa del tronco, biomasa de ramas y biomasa aérea obtenida mediante ecuaciones alométricas, se utilizó la fórmula 3 que indica una suma de todas las biomasas.

Tabla 3. Resultados Estadísticos de la Biomasa Total del Fuste

Transectos	Transecto 1	Transecto 2	Transecto 3	Transecto 4	Transecto 5	Totales
N° de árb	9	11	15	13	12	60
Promedio	14,0919	14,1186	14,2334	14,2247	14,1264	14,1590
Dev. Est.	0,1867	0,1627	0,1784	0,2097	0,1741	0,1823
Máxima	14,4198	14,4457	14,5234	14,5493	14,4198	14,5493
Minima	13,7726	13,8503	13,9280	13,9021	13,8503	13,7726
Co. Var	1,32%	1,15%	1,25%	1,47%	1,23%	1,29%

Pita, 2020

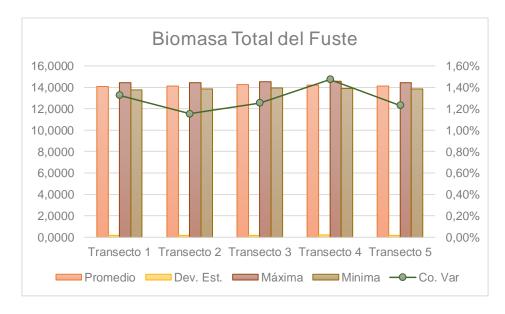


Figura 5. Resultados de la Biomasa Total del Fuste Pita, 2020

El resultado de promedio obtenido en el transecto 3 es el más alto con un valor de 14.2334 t/ha con una desviación estándar de 0.1784 y un coeficiente de variación del 1.25% mientras que el transecto 2 presenta el coeficiente de variación más bajo con un valor de 1.15% aunque solo presenta un promedio de 14.1186 t/ha. El valor máximo de biomasa total de fuste se encuentra en el transecto 4 con 14.5493 t/ha y el valor mínimo en el transecto 1 con 13.7726 t/ha.

4.2.4 Biomasa total aérea (t/ha)

Para determinar la biomasa total aérea se aplicó la fórmula 4 en la cual se hizo uso de los resultados de biomasa total de fuste obtenida anteriormente multiplicándola con el factor de expansión de biomasa para la especie *Rhizophora mangle* que es de 1.75 t/ha.

Tabla 4. Resultados Estadísticos de la Biomasa total aérea

Transectos	Transecto 1	Transecto 2	Transecto 3	Transecto 4	Transecto 5	Totales
N° de árb	9	11	15	13	12	60
Promedio	24,6609	24,7075	24,9085	24,8932	24,7213	24,7783
Dev. Est.	0,3267	0,2848	0,3122	0,3670	0,3047	0,3191
Máxima	25,2347	25,2800	25,4159	25,4612	25,2347	25,4612
Minima	24,1021	24,2380	24,3739	24,3286	24,2380	24,1021
Co. Var	1,32%	1,15%	1,25%	1,47%	1,23%	1,29%

Pita, 2020

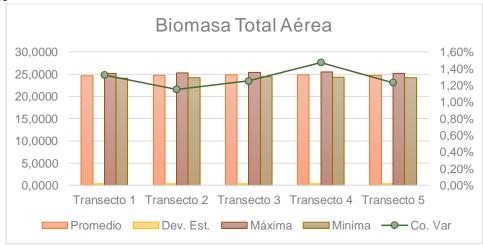


Figura 6. Resultados de la Biomasa Total Aérea Pita, 2020

En esta variable se obtuvieron valores de promedios altos para los transectos 3 y 4 con un 24.9085 t/ha y 24.8932 t/ha respectivamente. Se presentaron valores de variabilidad no mayores al 1.50% que determina que en cada uno de los transectos la muestra fue compacta, el porcentaje más bajo está presente en el transecto 2 con un 1.15% de variabilidad. El valor máximo de esta variable registrado dentro de los 5 transectos fue de 25.4612 t/ha correspondiente al transecto 4 y el valor mínimo de 24.1021 t/ha se presentó en el transecto 1.

4.2.5 Estimación de carbono almacenado en biomasa (t)

La estimación de carbono presente en los árboles de mangle rojo en el Área Nacional de Recreación Isla Santay se calculó aplicando la fórmula 5 detallada anteriormente en este trabajo donde se multiplico el valor de biomasa total aérea por fracción de carbono en biomasa correspondiente al 0.5.

Tabla 5.Resultados Estadísticos del Carbono Total Almacenado

Transectos	Transecto 1	Transecto 2	Transecto 3	Transecto 4	Transecto 5	Totales
N° de árb	9	11	15	13	12	60
Promedio	12,3304	12,3538	12,4543	12,4466	12,3606	12,3891
Dev. Est.	0,1633	0,1424	0,1561	0,1835	0,1523	0,1595
Máxima	12,6174	12,6400	12,7080	12,7306	12,6174	12,7306
Minima	12,0510	12,1190	12,1870	12,1643	12,1190	12,0510
Co. Var	1,32%	1,15%	1,25%	1,47%	1,23%	1,29%

Pita, 2020

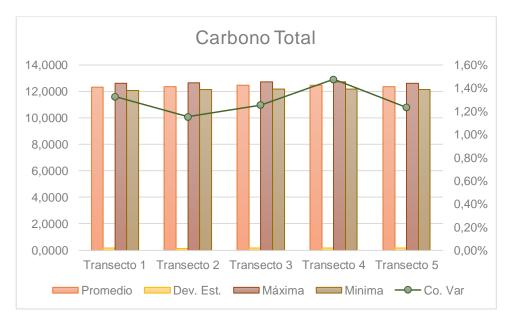


Figura 7. Resultados de Carbono Total Pita, 2020

El promedio más alto se presentó en el transecto 3 con un valor de 12.4543 t esto se debe a su mayor contenido de árboles mientras que el promedio más bajo se presenta en el transecto 1 con 12.3304 t. los transectos presentan una variabilidad no mayor a 1.5% siendo la más alta de 1.47% para el transecto 4 y la más baja de 1.15% para el transecto 2. No obstante cabe indicar que el valor

máximo de carbono almacenado se registró en transecto 4 con un 12.7306 t y un valor mínimo de 12.0510 t en el transecto 1.

Los valores totales resultantes de la aplicación de las distintas fórmulas planteadas en este trabajo se reflejan en la siguiente tabla y gráfico.

Tabla 6. Estimado de Carbono Total Almacenado en el ANRIS

	Transecto	Transecto	Transecto	Transecto	Transecto	Totales	
	1	2	3	4	5		
N° de árb	9	11	15	13	12	60	
Promedio DAP	0,1411	0,1444	0,1585	0,1574	0,1454	0,1494	
Promedio	6,8156	8,8364	11,0720	12,3800	10,2933	9,8795	
Altura							
Aréa basal	0,1445	0,1836	0,3017	0,2599	0,2035	1,0931	
Volumen del	0,5345	0,8565	1,7453	1,7404	1,1358	6,0125	
árbol							
Biomasa total	126,8273	155,3045	213,5016	184,9208	169,5172	850,0714	
de Fuste							
(ton/ha)							
Biomasa total	221,9477	271,7829	373,6278	323,6115	296,6551	1487,6250	
aérea (ton/ha)	440.0720	105 0014	100 0100	101 0057	440 2076	740 0405	
Carbono total	110,9739	135,8914	186,8139	161,8057	148,3276	743,8125	
almacenado							
Carbono	Extensión	de mangle	Toneladas de carbono		Estimado de carbono		
almacenado en	rojo en e	ANRIS	almacenado por		almacenado en el		
el ANRIS por el			hect	área	ANRIS		
mangle rojo.	250),74	743,81	125156	18650	3,5501	

Valores totales del carbono almacenado Pita, 2020

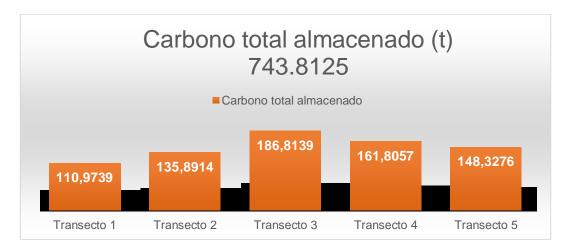


Figura 8. Valores totales de carbono almacenado por transectos Pita, 2020

El transecto 3 presenta una mayor captura de carbono con un valor de 186.8139 t mientras que el transecto 1 tiene el valor más bajo de 110.9739 t.

4.3 Programa de divulgación de la importancia del mangle rojo (*Rhizophora mangle*) como sumidero de carbono en el Área Nacional de Recreación Isla Santay.

4.3.1 Introducción

Los manglares son ecosistemas importantes que suministran agua, comida, forraje, medicina y miel. También son hábitats para muchas especies, tales como: cocodrilos, serpientes, delfines, aves, entre otros. Una amplia variedad de peces y mariscos dependen también de estos bosques. Además, su presencia ayuda a proteger a los arrecifes de coral de los sedimentos de las tierras altas (Cornejo, 2014).

El Área Nacional de Recreación Isla Santay ubicada en la provincia de guayas entre el cantón Guayaquil y Duran en el curso del rio guayas, cuenta con una gran biodiversidad tanto de flora como de fauna. Su gran extensión se encuentra cubierta de cobertura vegetal principalmente de tipo bosque seco/palma y manglar El mangle ocupa una extensión actualmente de 733.67 ha según este estudio, de esta área total se resalta las 250.74 de mangle rojo presentes en la isla.

El mangle rojo con sus 250.74 ha cumple con diversas funciones ambientales en la isla, la principal es la captura de carbono que es de 743,81 t/ha, como también es habitad de especies marinas, de insectos y aves. Por tal razón es de suma importancia que sepamos sus beneficios y su capacidad de captura obtenidas en este estudio para que sea conservado de la mejor manera.

4.3.2 Objetivo general

Divulgar la importancia del mangle rojo (Rhizophora mangle) del Área Nacional de Recreación Isla Santay.

4.3.2.1 Objetivos específicos

- Dar a conocer los resultados obtenidos a los actores involucrados sus principales beneficios e importancia de conservación.
- Difundir mediante herramientas de comunicación las principales ventajas de conservar el mangle rojo (Rhizophora mangle).

4.3.3 Mensaje

El mangle rojo posee un gran potencial de captura de carbono de 7,103.82 t/ha que contribuye de gran manera a las disminuciones de gases de efecto invernadero y de este modo influye de manera positiva al cambio climático.

4.3.4 Destinatarios

- Destinarios directos internos: habitantes de la Isla Santay y personal del MAE.
- **Destinatarios directos externos:** turistas, visitantes de la Isla Santay, ciudadanos de Guayaquil y Duran.

4.3.5 Herramientas y actividades

4.3.5.1 Herramientas educativas:

- Folletos educativos: brindar folletos educativos con información detallada de la importancia del mangle.
- Charlas: brindar charlas de bienvenida donde se proporcione información básica e introductoria de la importancia de mangle.
- Exposiciones: proporcionar exposiciones con todos los beneficios y las características del mangle rojo en reunión de bienvenida en auditorio del Área Nacional de Recreación Isla Santay (Zabala, 2018).

4.3.5.2 Herramientas tecnológicas:

- Redes sociales: promover la difusión mediante redes sociales de organismos y fundaciones ambientales sobre el cuidado y los beneficios del mangle rojo en la isla santay.
- Página web: crear página web con información e importancia del mangle rojo en la Isla Santay (Zabala, 2018).

4.3.5.3 Herramientas audiovisuales:

- Videos: crear videos educativos sobre información detallada del mangle rojo.
- Audios informativos: crear audios sobre información básica del mangle y sus ventajas de conservarlo (Zabala, 2018).

4.3.5.4 Herramientas publicitarias

- Posters: colocarlos en lugares estratégicos de los recorridos de la isla donde haya presencia de mangle rojo.
- Volantes: proporcionar volantes con información del mangle.
- Carteles informativos: colocarlos en lugares estratégicos como ecoaldea, comedores y centro de información de la isla donde los destinarios puedan apreciarlos (Zabala, 2018).

4.3.6 Cronograma

Tabla 7. Cronograma para programa de divulgación

CRONOGRAMA DEL PROGRAMA DE DIVULGACIÓN

MES

1 2 3 4 5 6 7 8 9 10 11 12

Dar a conocer los resultados obtenidos a los autores involucrados sus principales beneficios e importancia de conservación.

X X X X

Divulgar la importancia del mangle rojo (Rhizophora mangle) del Área Nacional de Recreación Isla Santay

Difundir mediante herramientas de comunicación las principales ventajas de conservar el mangle rojo (*Rhizophora mangle*).

4.3.7 Presupuesto

Tabla 8. Presupuesto para programa de divulgación

PRESUPUESTO PARA PR			N
ACTIVIDADES	CANTIDAD	UNIDAD	COSTO
Realizar publicaciones de información sobre el Área Nacional de Recreación Isla Santay	1000	\$ 0,05	\$ 50,00
Realizar publicaciones de información sobre el mangle rojo en el ANRIS y su importancia	1000	\$ 0,05	\$ 50,00
Realizar publicaciones de los resultados obtenidos en el estudio	1000	\$ 0,05	\$ 50,00
Realizar y publicar videos de información detallada del estudio del mangle rojo en el ANRIS	1000	\$ 0,10	\$ 100,00
Realizar y publicar audios con información básica del mangle y la importancia de su conservación	1000	\$ 0,10	\$ 100,00
Crear página con resultados y beneficios de la conservación del mangle rojo el ANRIS	1000	\$ 0,10	\$ 100,00
Realizar y colocar posters con datos relevantes del estudio	1000	\$ 0,50	\$ 500,00
Realizar e impartir volantes a turistas y visitantes del ANRIS	1000	\$ 0,20	\$ 200,00
Realizar y colocar carteles informativos referente a la capacidad de captura de carbono del mangle del ANRIS	20	\$ 0,50	\$ 100,00
Realizar e impartir folletos educativos referente a las diferentes clases de vegetación presente en el ANRIS y su extensión	1000	\$ 0,40	\$ 400,00
Brindar charlas referentes a los resultados del estudio e importancia del mangle rojo	96	\$ 40,00	\$3.840,00

Impartir exposiciones detallando el estudio realizado haciendo énfasis en sus objetivos y resultados obtenidos	96	\$ 40,00	\$3.840,00
TOTAL			\$9.330,00

Presupuesto del programa de divulgación Pita, 2020

4.3.8 Seguimiento y evaluación- resultados esperados

Para garantizar la realización de las medidas previstas en materia de divulgación y difusión, y para facilitar una gestión eficaz y transparente del programa se establece un seguimiento de los resultados.

Tabla 9. Programa de divulgación – seguimiento y evaluación

(F)	PROGRAMA DE DIVULGAC	CION DEL ESTUDIO CAPTURA DE CARBONO DEL MANGLE ROJO (Rhizophora mangle) EN EL ÁREA NACIONAL DE RECREACIÓN ISLA SANTAY.			SEGUIMIENTO Y EVALUACION		AUTOR: ROBERTO PITA V. TUTOR: BLG. RAUL ARIZAGA G.	
	OBJETIVOS	ACTIVIDADES	HERRAMIENTA	TIEMPO	ENCARGADO I	DESTINATARIO	INDICADORES	META
		Realizar publicaciones de información sobre el Área Nacional de Recreación Isla Santay	H. Tecnológica	1 mes	MAE	D.D.E	# Publicaciones	1000
		Realizar publicaciones de información sobre el mangle rojo en el ANRIS y su importancia	H. Tecnológica	1 mes	MAE	D.D.E	# Publicaciones	1000
	Dar a conocer los resultados obtenidos a los autores	Realizar publicaciones de los resultados obtenidos en el estudio	H. Tecnológica	1 mes	MAE	D.D.E	# Publicaciones	1000
	involucrados sus principales beneficios.	Realizar y publicar videos de información detallada del estudio del mangle rojo en el ANRIS	H. Tecnológica H. Audiovisuales	1 mes	MAE	D.D.E	# Reproducciones	1000
Dividente		Realizar y publicar audios con información básica del mangle y la importancia de su conservación	H. Tecnológica H. Audiovisuales	1 mes	MAE	D.D.E	# Reproducciones	1000
Divulgar la mportancia del mangle rojo		Crear página con resultados y beneficios de la conservación del mangle rojo el ANRIS	H. Tecnológica	1 mes	MAE	D.D.E	# Visitas	1000
(<i>Rhizophora</i> angle) del Área Nacional de	Difundir mediante herramientas de	Realizar y colocar posters con datos relevantes del estudio	H. Publicitaria	12 meses	MAE	D.D.E D.D.I	# Posters	1000
Recreación Isla Santay		Realizar e impartir volantes a turistas y visitantes del ANRIS	H. Publicitaria	12 meses	MAE	D.D.E D.D.I	# Volantes	1000
		Realizar y colocar carteles informativos referente a la capacidad de captura de carbono del mangle del ANRIS	H. Publicitaria	12 meses	MAE	D.D.E D.D.I	# Carteles	20
	comunicación las principales ventajas de conservar el	Realizar e impartir folletos educativos referente a los diferentes clases de vegetación presente en el ANRIS y su extensión	H. Educativas	8 meses	MAE	D.D.E D.D.I	# Folletos	1000
	mangle rojo.	Brindar charlas referentes a los resultados del estudio e importancia del mangle rojo	H. Educativas	8 meses	MAE	D.D.E D.D.I	# Charlas	96
		Impartir exposiciones detallando el estudio realizado haciendo énfasis en sus objetivos y resultados obtenidos	H. Educativas	8 meses	MAE	D.D.E D.D.I	# Exposiciones	96

Programa de divulgación detallado – seguimiento y evaluación Pita, 2020

5. Discusión

Mediante imágenes satelitales se pudo procesar el mapa de cobertura vegetal del Área Nacional de Recreación Isla Santay haciendo énfasis en la extensión y distribución de mangle rojo que es de 250.74 ha. El ANRIS se encuentra compuesta principalmente de las siguientes coberturas: desforestado, bosque seco/palma, herbazal, cuerpos de agua, mangle y mangle rojo. Esto hace referencia a los resultados presentados por Lara (2018) donde en su estudio realizado en el ANRIS del análisis multitemporal de la cobertura vegetal definió las siguientes coberturas: Bosques con alta densidad de palmas, Bosques con baja densidad de palmas, Bosque de manglar denso, Bosque abiertos dispersos, Vegetación herbácea, Suelo desnudo, Cuerpos de agua. Estas coberturas definidas por el estudio de Lara coinciden de cierta manera con las coberturas obtenidas, debido a que la definición de estas depende exclusivamente del investigador y su observación en el campo. No obstante, hay mucha relación en las zonas y extensión donde se presentan las diferentes coberturas en especial la del mangle.

Mediante el mapa obtenido se definió el lugar de muestreo apropiado que finalmente fue la parte oriental este resultado coincide con lo expuesto en el plan de manejo de la isla según MAE (2011) luego se aplicó la metodología detallada anteriormente obtenido un total de 743,81 toneladas de carbono por hectáreas este resultado se asemeja según lo expuesto por Alongi (2014) donde afirma la existencia de carbono a escala de ecosistema es de 956 t/ha siendo el manglar unas de las plantas con más potencial de captura de carbono.

Para el efecto de estos resultados se utilizaron ecuaciones alometricas en las cuales los componentes principales fueron las altura y el DAP del árbol esto es afirmado por Fromard (1998) que indica que se ha usado modelos de regresión

para determinar la biomasa aérea de especies de manglar que reportan que el DAP solo, o asociado con la altura, son las variables más importantes y relevantes en esta estimación.

Haciendo referencia a los resultados antes mencionado cabe recalcar que el valor de biomasa aérea obtenida por hectáreas es de 388,19 t estos resultados son afirmados según lo expuesto por Lacher (1977) en su estudio que indica que la biomasa aérea oscila entre valores de 100 y 200 t/h a nivel pantropical mientras que en otras zonas es posible encontrar valores mayores como los encontrados en indonesia o malasia de 300 t/h que hace referencia a la estimación obtenida en el presente estudio en la Isla Santay.

Los resultados de carbono total obtenido en este estudio corresponden a 743,81 t/ha de carbono esto difiere a lo presentado por Ramón (2017) en su estudio sobre el secuestro de carbono del mangle negro Avicennia germinans desarrollada en la Reserva de Producción Faunística "Manglares El Salado" sus resultados fueron de 2430.20 t/ha de carbono en un aérea de 1000 m².

Esta diferencia de resultados puede ser porque la especie *Rhizophora mangle* realice una menor captura de carbono ya que esta mayoritariamente presente en la primera línea de costa mientras que el mangle negro tiene mayor presencia en extensión en los bosques de manglar.

En referencia a lo antes mencionado cabe indicar los resultados obtenidos por Bruno (2019) en su estudio de evaluación del potencial de captura del mangle rojo *Rhizophora mangle* realizado en el RVSMERE, presentando resultados de 446.94 t/ha carbono que se asemeja a los resultados obtenidos en el presente estudio.

6. Conclusiones

La extensión de mangle rojo (*Rhizophora mangle*) ocupada en el ANRIS es de 250.74 ha que es considerable referente a la extensión total del área, el mangle rojo es una especie que alberga gran cantidad de microorganismos y vida animal debido a las condiciones que presenta su habitad. También cumple un papel importante en la isla frente a eventos meteorológicos y climáticos. Esto manglares aportan gran cantidad de nutrientes que benefician distintas comunidades de especies.

Por lo tanto, el ANRIS tiene una estimación de captura considerable de 743.81 t/ha de carbono referente a otros estudios de estimación de captura de carbono realizados en otras áreas naciones de protección, cabe recalcar que si este valor lo multiplicamos por el área total calculada de mangle rojo se obtendrá un valor estimado de 186,503.55 toneladas de carbono lo cual ayuda significativamente a las disminuciones de emisiones a la atmosfera, por ende, contribuyen positivamente contra el cambio climático.

Así mismo el programa de divulgación resultante de este estudio pretende aporta la difusión y la conservación del mangle rojo en el ANRIS y al Área en general. Es de suma importancia dar a conocer todas las ventajas de la conservación de un ecosistema como lo es el manglar ya que posee grandes beneficios ambientales.

7. Recomendaciones

El uso de mapas de cobertura vegetal contribuye a la definición de la extensión de todas las especies de mangle en el ANRIS como también se podría aplicar en otras áreas nacionales protegidas determinando extensiones de mangle y de otros ecosistemas esto en función de la conservación de todos los ecosistemas presente en nuestro país e impedir la pérdida o deterioro de estos.

También es importante indicar que se podría aplicar la metodología utilizada en este estudio para determinar la cantidad de carbono capturada en las distintas especies de mangle que se encuentran en el ANRIS de igual manera a una mayor escala poder determinar la captura de todos los ecosistemas juntos en la isla y poder generar un inventario de captura de carbono que aporta esta contra en cambio climático.

No obstante, cabe indicar que esto se complementa con la aplicación del programa de divulgación establecido el cual ayuda de manera positiva y ágil a dar a conocer los resultados del estudio y concientizar a los habitantes de la isla y visitantes sobre lo importante que es conservar ecosistemas debido a su aporte ambiental.

Bibliografía

- Alongi, D. (2014). Carbon Cycling and Storage in Mangrove Forests. *Annual review of marine science*, 195-219.
- Alongi, D. M. (2009). *The Energetics of Mangrove Forests*. Países Bajos: Springer Netherlands.
- Brown. (1997). Estimating biomass and biomass change of tropical forests: Primer. FAO Forestry Paper, 134.
- Bruno, K. (1 de Julio de 2019). Evaluacion de potencial de captura de carbono por la especie (Rhizophora mangle) mediante ecuaciones alometricas en el refugio de vida silvestre manglares del estuario rio Esmeraldas. Evaluacion de potencial de captura de carbono por la especie (Rhizophora mangle) mediante ecuaciones alometricas en el refugio de vida silvestre manglares del estuario rio Esmeraldas. Guayaquil, Guayas, Ecuador: Universidad Agraria del Ecuador.
- Carvajal. (15 de Noviembre de 2019). *Ministerio de mbiente del Ecuador*. Obtenido de http://conservation.org.ec/wp-content/uploads/2019/07/PAN-Manglares-Ecuador.pdf
- Comisión Nacional de Áreas Naturales Protegidas. (16 de Junio de 2013). *Gobierno de Mexico*. Obtenido de Dirección de Estrategias de Cambio Climático: https://www.gob.mx/cms/uploads/attachment/file/41978/Estrategia-Nacional-Cambio-Climatico-2013.pdf
- CONABIO. (2009). *Mangle negro. Fichas de Especies Mexicanas.* Mexico:

 Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

- CONABIO-CONANP. (2009). Mangle blanco (Laguncularia racemosa). Fichas de especies Mexicanas. Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad y Comisión Nacional de Áreas Naturales Protegida.
- Cornejo, X. (16 de febrero de 2014). Árboles y Arbustos de los Manglares del Ecuador. Quito, Pichincha, Ecuador. Obtenido de Flacso Andes: https://biblio.flacsoandes.edu.ec/catalog/resGet.php?resId=55818
- Cumana, L. (2010). Plantas vasculares de los manglares del estado Sucre, Venezuela. *Acta Botánica Venezuelica*, 273-298.
- Fatoyinbo, T. E.-A. (2008). Landscape-scale extent, height, biomass, and carbon estimation of Mozambique's mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. *Geophysical Research*, 1-13.
- Fernández, J. L. (2012). EL CAMBIO CLIMÁTICO; SUS CAUSAS Y EFECTOS

 MEDIOAMBIENTALES. ANALES DE LA REAL ACADEMIA DE MEDICINA

 Y CIRUGÍA DE VALLADOLID, 71-98.
- Fourqurean, J. (5 de Septiembre de 2017). *Unión Internacional para la Conservación de la Naturaleza (UICN)*. Obtenido de Unión Internacional para la Conservación de la Naturaleza (UICN): https://www.iucn.org/sites/dev/files/spanish_carbonoazul_lr.pdf
- Fromard, F. P. (1998). Structure, above groundbiomass. Guiana: Oecologia.
- Gette, N. (12 de Junio de 2009). *BIODIVERSIDADLA*. Obtenido de BIODIVERSIDADLA:
 - http://www.biodiversidadla.org/Noticias/La_importancia_de_los_manglares

- Gobierno de España. (Junio de 20 de 2016). *Ministerio para la Transición Ecológica*y el Reto Demográfico . Obtenido de https://www.miteco.gob.es/es/cambioclimatico/temas/que-es-el-cambio-climatico-y-como-nos-afecta/
- Gomez, J. (2011). ECUACIONES ALOMÉTRICAS PARA ESTIMAR BIOMASA Y

 CARBONO EN Quercus magnoliaefolia. Revista Chapingo, Series Ciencias

 Forestales y del Ambiente, 261-272.
- GREENPEACE. (1 de Noviembre de 2018). *GREENPEACE*. Obtenido de GREENPEACE: https://es.greenpeace.org/es/wp-content/uploads/sites/3/2018/11/GP-cambio-climatico-LR.pdf
- Guevara, A. (2016). *Inventario Nacional de Gases de Efecto Invernadero del Ecuador*. Quito: Ministerio del Ambiente del Ecuador.
- Herrera, J. (2017). CARBONO AZUL, MANGLARES Y POLITICA PÚBLICA.

 México: Alma S. Velázquez Rodríguez.
- INECC-PNUD. (2017). Estudio para la identificación, caracterización y evaluación del balance entre las emisiones de GEIs y las zonas de captura y almacenamiento de carbono en zonas de ecosistemas costero/marinos del Pacífico, Golfo de México y la Península de Yucatán (Carbon. Mexico: Programa Mexicano del Carbono.
- INOCAR. (1 de Julio de 2020). *Instituto Oceanográfico de la Armada*. Obtenido de INOCAR: https://www.inocar.mil.ec/mareas/TM/2020/GUAYAQUIL_RIO.pdf
- IPCC. (2007). Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Ginebra: GRUPO INTERGUBERNAMENTAL DE EXPERTOS SOBRE EL CAMBIO CLIMÁTICO.

- IPCC. (2014). Quinto informe de evaluacion del Grupo Intergubernamental de Expertos sobre Cambio Climatico . Ginebra: Grupo Intergubernamental de Expertos sobre Cambio Climatico.
- Jaramillo, A. (2008). FICHA INFORMATIVA DE LOS HUMEDALES RAMSAR.

 Guayaquil: Fundación Malecón 2000- Ecofondo 025-ECO7-CO3.
- Lacher. (1977). Ecofisiologia vegetal. España: Omega.
- Lara, M. (8 de Marzo de 2018). *Analisis Multitemporal de Cobertura Vegetal del ANRIS*. Obtenido de Universidad Agraria Del Ecuador : https://cia.uagraria.edu.ec/Archivos/LARA%20MERCH%C3%81N%20CRISTINA%20MAR%C3%8DA.pdf
- MAE. (31 de Julio de 2020). *Ministerio del Ambiente del Ecuador*. Obtenido de sistema unico de informacion ambiental: http://biodiversidad.ambiente.gob.ec:8099/biodiversidad-web/login.xhtml
- Martínez, L. M. (2016). Ecosistema de Manglar. Cartagena: EPA CARTAGENA.
- Mendoza, M. (2018). Biomasa aérea y captura de carbono en manglares de la zona árida del noroeste de México: Bahía del Tóbari y estero El Sargento, Sonora. *Revista Chapingo Serie Ciencias Forestales*, 387-403.
- Ministerio del Ambiente. (16 de febrero de 2011). Área Nacional de Recreación Isla Santay y Gallo. Obtenido de http://simce.ambiente.gob.ec
- Ministerio del Ambiente. (2019). PRIMERA CONTRIBUCIÓN DETERMINADA A

 NIVEL NACIONAL PARA EL ACUERDO DE PARÍS BAJO LA

 CONVENCIÓN MARCO DE NACIONES UNIDAS SOBRE CAMBIO

 CLIMÁTICO. Quito: Gobierno del Ecuador.
- Mostacedo, B. (2000). Básicos, Manual de Métodos Básicos de Muestreo y Análisis en Ecología Vegetal. Santa Cruz de la Sierra: BOLFOR.

- Naciones Unidas. (22 de Septiembre de 2019). *Noticias ONU*. Obtenido de Noticias ONU: https://news.un.org/es/story/2019/09/1462482
- Ong, G. W. (1981). Ecological Monitoring of the Sungai Merbok Estuarine Mangrove Ecosystem. Malasia: Universiti Sains Malaysia.
- Ordóñez, J. A. (2008). Captura de carbono ante el cambio climático. *Madera y BOSQUE*, 3-12.
- Peña, A. D. (2010). Valoración económica del manglar por el almacenamiento de carbono, Ciénaga Grande de Santa Marta. *Revista Economica del Caribe*, 133-150.
- Quiceno, U. (2015). ESTIMACIÓN DEL CONTENIDO DE BIOMASA, FIJACIÓN DE CARBONO Y SERVICIOS AMBIENTALES, EN UN ÁREA DE BOSQUE PRIMARIO EN EL RESGUARDO INDÍGENA PIAPOCO CHIGÜIRO-CHÁTARE DE BARRANCOMINAS, DEPARTAMENTO DEL GUAINÍA (COLOMBIA). Revista Luna Azul, 171-202.
- Ramon, A. (21 de Marzo de 2017). ESTIMACIÓN DE CONTENIDO DE CARBONO EN EL MANGLE NEGRO (Avicennia germinans), DE LA RESERVA DE PRODUCCIÓN FAUNÍSTICA MANGLARES EL SALADO DE LA CIUDAD DE GUAYAQUIL. Guayaquil, Guayas, Ecuador: Universidad Agraria Del Ecuador.
- Research, P. &. (2016). Rhizophora mangle L. (mangle rojo): Una especie con potencialidades. *Research, Pharmacy & Pharmacognosy*, 1-17.
- Ribón, D. M. (10 de Julio de 2015). *Guía para la producción de material vegetal en el Distrito de Cartagena*. Obtenido de EPA: http://observatorio.epacartagena.gov.co/wp-content/uploads/2016/06/tomo-

- iii-anexo-2-guia-para-la-produccion-de-material-vegetal-en-la-ciudad-decartagena.pdf
- Salazar, M. (2013). EL MANGLE ROJO del Pacífico Norte de México. *Biodiversitas*, 7-11.
- Sistema Nacional de Informacion Forestal. (2012). *Rhizophora mangle.* Mexico: Secretaria de Medio Ambiente y Recursos Naturales.
- Solaun K., L. I. (2013). Blue Carbon. Propuestas para preservar el carbono azul. FACTORCO2 ideas, 44.
- Tapias, L. (1979). *Introducción a la dasometría*. Medellin: Biblioteca Sede Medellín Universidad Nacional de Colombia.
- Villalobos, M. M. (13 de Agosto de 2011). ESTRUCTURA, COMPOSICIÓN FLORÍSTICA, BIOMASA Y CARBONO ARRIBA DEL SUELO EN LOS MANGLARES LAGUNA DE GANDOCA Y ESTERO MOÍN, LIMÓN COSTA RICA. Revista Forestal Mesoamericana kurú (RFMK), 1-18.
- Yáñez, A. (1998). Los ecosistemas de manglar frente al cambio. Redalyc, 3-19.
- Yepes, M. Z.-C. (2015). Ecuaciones alométricas de biomasa aérea para la estimación de los contenidos de carbono en manglares del Caribe Colombiano. *Biología Tropical*.
- Zabala, S. (8 de Julio de 2018). Plan de Manejo y Proteccion del Centro Historico de Villa del Rosado y su Zona de Influencia. En S. Zabala, *Plan de Manejo y Proteccion del Centro Historico de Villa del Rosado y su Zona de Influencia* (págs. 120-140). Cucuta: Redipe. Obtenido de https://es.slideshare.net/ratatuy1234/2-7-vr-plan-de-divulgacinfinal

Zapata, M. (23 de Agosto de 2015). Ecuaciones alométricas de biomasa aérea para la estimación. *Biología Tropical*, 913-926. Obtenido de https://www.scielo.sa.cr/pdf/rbt/v64n2/0034-7744-rbt-64-02-00913.pdf

8. Anexos

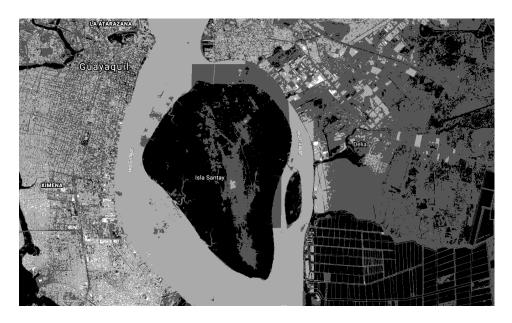


Figura 9. Mapa Del Área de Estudio Google Earth, 2020

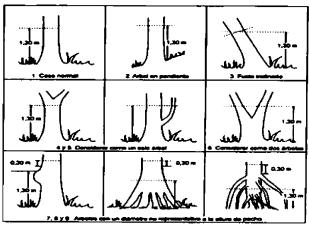


Figura 10. Mediciones del DAP (1,30m) según la forma del árbol CATIE, 1994

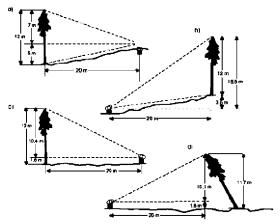


Figura 11. Cálculo de la altura del árbol FAO,2004

Tipo de Bosque	Almacenamiento	de Carbono (ton C/ha)
	Primario	Secundario
Bosque nuboso	230	190
Bosque estacional	140	120
Bosque seco	60	25

Figura 12. Depósitos superficiales de C en bosques tropicales Brown y Lugo, 1992

Ecosistema	Carbono almacenado	Intervalo	CO ₂
ECUSISIEMIA	T ha	T ha	equivalente a ha
Manglar IPCC	386	55-1376	1416
Terrestres de México	62.6	22-117	230
Manglares de México	364	53-1345	1336

Figura 13. Carbono capturado por ecosistemas Pita, 2020

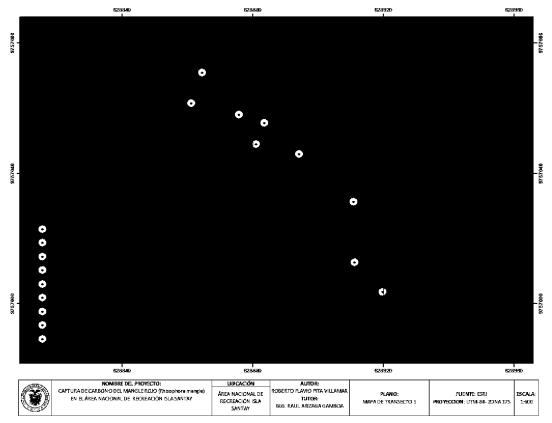


Figura 14. Mapa de Transecto 1 Pita, 2020

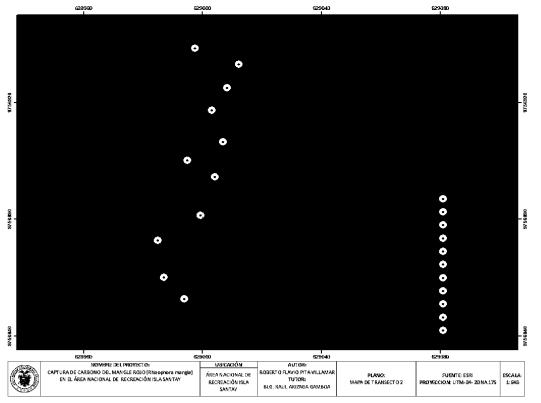


Figura 15. Mapa de Transecto 2 Pita, 2020

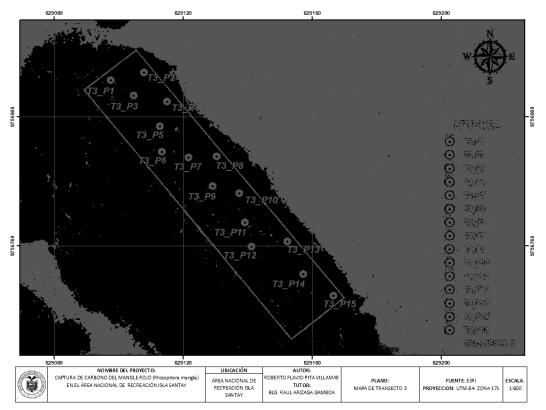


Figura 16. Mapa de Transecto 3 Pita, 2020

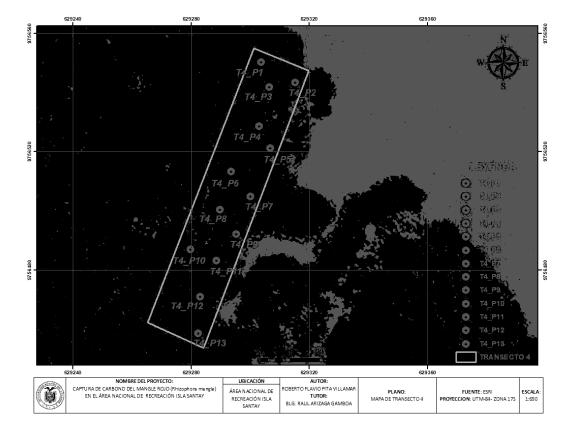


Figura 17. Mapa de Transecto 4 Pita, 2020

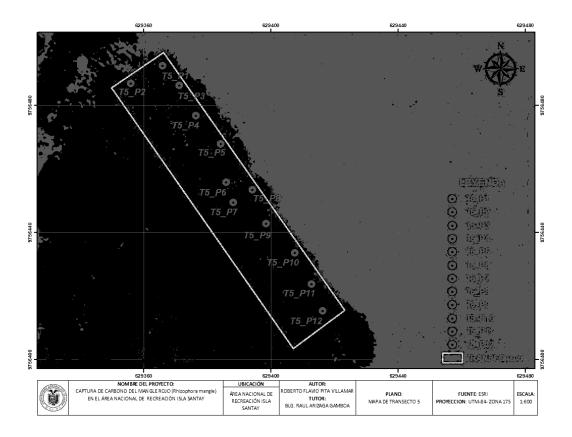


Figura 18. Mapa de Transecto 5 Pita, 2020

PRONUNCIAMIENTO FAVORABLE No. MAAE-ARSFC-2020-0602

Sr. PITA VILLAMAR ROBERTO FLAVIO,

Una vez que la propuesta para Autorización de Recolecta de Especímenes de la Diversidad Biológica para Investigación Científica, ha sido analizada, el Ministerio del Ambiente y Agua en uso de las atribuciones que le confiere el Acuerdo Interministerial SENESCYT-MAE N°001 aprueba el Proyecto CAPTURA DE CARBONO DEL MANGLE ROJO Rhizophora mangle EN EL ÁREA NACIONAL DE RECREACIÓN ISLA SANTAY, al haber cumplido con los parámetros técnicos, administrativos y legales, establecidas en la ley.

Por lo dispuesto, solicito realizar el pago correspondiente en BanEcuador en la cuenta N. 3001174975, en base a lo dispuesto en el Texto Unificado de la Legislación Ambiental Secundaria.

Atentamente,

ROJAS ALFONSO WILSON

DIRECCIÓN NACIONAL DE BIODIVERSIDAD

Bélacon, i. o.t. $(a,b) \in \mathbb{R}^n$. A constant Godge postal, $(a,b) \in \mathbb{R}^n$. If it is leaving that $(a,b) \in \mathbb{R}^n$, we have the constant $(a,b) \in \mathbb{R}^n$.

TABLA II.- PREDICCIÓN DIARIA DE MAREAS EN EL ECUADOR GUAYAQUEL (RÍO GUAYAS) 2920

		EN	ERC)				ŦBł	ŒR	0				MA	RZ0		
aLA	HERLA N. H.	ALT.	DIA	HOMA H.M.	ALT. HPS.	034	HOMA. H.M.	M.T. MTS.	DEA	HERA B.S.	ALE. NTS.	DEA	неж А И. 4.	ALI. NTI.	ata	HESPLA N. H.	
1 FE	0590 1124 1759 2351	0.4 3.6 0.7 3.9	16 10	0624 1135 1828	0.5 4.0 0.4	Ď	062) 1217 1436	6.J 1.6 0.B	L6 00	0024 0728 1301 1943	4.2 0.6 3.9 8.6	1	0550 1135 1806 2345	0.6 3.8 5.8 3.9	35 40	0657 1231 1912	0.5 4.6 0.9
1U 1U	0626 1212 1434	0.8 3.4 0.1	" •		4.3 0.5 1.5 0.6	-aa	0013 0763 1 169 1921	1.6 6.6 1.4 6.5	17 18	0119 0025 1404 2847	↓_0 0_6 3.8 1_0	² €	0627 1711 1845	0. T 3. 6 0. 9	17 MA	0649 0750 1334 2615	3.9 0.7 3.4 1.1
3 VT	0035 0706 1304 1917	3.7 0.9 3.1 0.4	Ħ	0055 0759 1338 2013	4.1 0.6 1.8 0.7	i iii	0134 0750 1466 2014	1.6 6.2 1.4 1.1	LB MA	6225 6933 1516 2204	3.4 0.7 1.7 1.0	,i	0024 0765 1311 1934	3.4 8.8 3.6 1.0	16 FIT	0145 MAS7 1445 2137	3.7 0.8 3.4 1.1
37	0524 0735 1400 2009	3.4 0.9 3.1 1.0	19 IB	8153 0961 1436 2120	6.0 6.6 1.7 0.5	***	0721 0845 1566 2131	1.5 6.5 1.4 1.1	19 MI	8339 1843 1633 2315	3.6 0.7 3.8 0.9	<u> </u>	0135 0861 1473 2035	3. 7 0. d 3. 6 1. 1	19 30	0317 1013 1404 2257	3.6 0.4 3.4 1.6
5 00	0216 0456 1458 2413	3.5 0.4 1.1 1.1	т. Ж	8257 1007 1546 2217	1.6 0.6 1.7 0.5	-S +Œ	0123 1635 1635 2241	1.6 6.5 1.6 1.1	<i>Ж</i> Ж	0454 1111 1745	1.7 0.6 1.9	د داد	0244 0908 1510 2156	1.7 6.9 1.7 1.1	20 VI	0432 1111 1718	3.4 0.7 3.4
10	1912 1007 1535 2226	1.5 0.4 1.1	11 44	0407 1112 1650 2341	1.7 0.5 1.6 0.6	6 RJ	0424 1122 1736 2357	1.7 6.8 1.6	21 41	6021 0602 1245 1642	0.4 3.5 0.4 4.1	vi vi	0 152 1038 1637 7177	3.8 6.9 3.9 1.0	21 54	0001 0539 1318 1415	8.4 8.4 4.1
T MM	0408 1111 1654 2331	3.6 0.7 3.5 1.0	2.2 #0	0516 1212 1864	1.7 0.4 1.5	VE.	0524 1327 1509	1.5 6.6 4.0	22 56	6117 6655 1334 1927	0.6 4.0 0.4 4.2		1741 1741 1943 1943	4.0 0.7 4.2	22 00	0051 0431 1308 1458	0.6 4.6 0.5 4.3
PLE	0503 1208 1748	3.7 0.4 2.7	11. 33	0047 0617 1307 1500	8.7 1.6 8.3 1.0	24	8101 0621 1125 1 10 3	0.8 4.1 6.5 4.3	23 00		0.5 4.1 0.4 4.3		0019 0558 1762 1824	6.6 6.6 4.5	23 10	0137 0713 1350 1533	0.5 4.1 0.4 4.4
1U 9	0531 0555 1300 1139	8.4 3.4 4.5	M WI	0135 0750 1356 1946	6.6 1.5 0.1 4.1	Ö	0117 6715 1436 1456	6.6 4.3 6.4 4.5	24 LU		0. 5 4. 2 0. 4 4. 4	Ö	1910 6673 0113	8.6 4.5 0.4 4.7	24 M.	0216 0747 1426 2001	0.4 4.3 0.4 4.4
Ö	0125 0645 1350 1607	0.7 4.6 0.4 4.1); M	0223 8754 1441 2025	0.5 4.8 6.3 4.2	14	0245 0866 1569 2046	0.4 4.4 0.3 4.6	25. HA	0320 6844 1513 21h2	0.5 4.2 0.4 4.4	10.	0230 0745 1444 3013	0. a 4. 6 6. 3 4. d	26 MX	0251 M19 1501 2031	0.4 4.3 0.4 4.5
1A 11	6216 6734 1439 7613	0.6 1.1 0.3	16	0 50 5 0 6 3 2 1 5 2 1 2 0 5 7	0.5 4.0 0.1 4.1	#	0317 0855 1554 2124	0.4 4.5 6.3 4.7	26 MI	6342 6515 1603 2135	0 h 4.2 0.5 4.4	HZZ L.†	5105 5279 6979 6317	0.3 4.7 0.3 4.1	2 6 30	0324 blat 1533 2360	8.4 4.3 8.5 4.4
52 52	0305 0427 1526 2050	0.5 4.2 4.4	27 Ш	0344 0966 1557 2136	6.6 4.6 0.4 1.3	12 44	0434 0341 1846 2768	8.3 4.5 6.1 4.7	27 10	0432 0144 1616 1303	0.6 4.1 0.6 4.3	빞	0463 6123 1611 1143	0.2 4.7 0.3 +.6	}†	0354 0521 1404 7129	0.5 4.2 0.5 4.4
35 40	0351 0908 1413 2141	0.5 4.1 0.3 4.4	11 44	0416 0939 1629 2 36 2	0.6 4.0 6,5 4.7	11 HJ	0500 1027 1723 2751	6.1 4.4 0.1 4.6	26 43	0450 1026 1641 2231	0.4 4.1 0.6 4.3	L3 ₩3	4447 2006 1700 2224	0. 2 4.6 0. 4 4. 6	24 44	D424 D657 1431 7248	4.1 4.1
34 MA	0440 0456 1618 2228	0.4 4.3 0.3	*4	0450 1018 1650 2285	6.7 1.8 6.6 1.2	up up	0353 1134 1806 2135	0.+ 4.1 0.4 4.4	25	8615 1855 1776 1786	0. h 6. 9 0. f 4. 1	Ť.	05M 1041 1741 1366	0.3 4.4 8.5 4.4	34 80	0414 1021 1705 2228	0.5 4.0 0.7 4.3
11 EE	0527 1041 1741 2714		IF RP	0619 1050 1736 2311	6,7 1,6 6,6 4,4	ů	1827 130°C	6.4 4.1 8.8				13	1177 7514 7174 9617	0.4 4.2 4.2	36 30	0521 1100 1740 7101	0.4 1.4 0.7 4.6
			11	0444 1 758 2550	0.7 1.7 0.7 1.8										JI.	연약 기타	0.4 1.1 1.1
HOMA.	pe zo	u .	5														

Figura 20. Tabla de Mareas Guayaquil (Rio Guayas 2020) Primer Trimestre INOCAR, 2020

TABLA II.- PREDICCIÓN DIARIA DE MAREAS EN EL ECUADOR GUAYAQUEL (RÍO GUAYAS) 2020

_			RIL					MA	YO					JUI	MIÓ		
U	HERA H.H.		814	HULA H.M.	ALT. WYS.	824.	HOLA H . FL	M.T. MF5.	DEA	HEMBA N.M.	ALF. VTS.	DILA	MDEA H.H.	ALT. 413.	OM	HERIA H.H.	4LT.
Ö	0641 1243 1407	0.7 3.7 0.9		0124 0822 1413 2106	1.6 6.8 1.8 1.1	1 17	0043 0757 1327 1354	3.8 0.6 3.9 0.9	16 54	0206 0451 1441 2145	3.5 8.6 3.6 0.9	Lite	0248 0936 1515 2214	1.9 0.6 4.1 0.6	M	0327 1003 1545 2251	3.5 6.5 3.7 6.7
10	0101 0712 1150 1007	3.7 0.7 3.7 1.6	17 PE	0242 0937 1527 2227	3.5 0.8 3.8 1.0	3	0151 0E21 1#34 2117	3.5 0.7 4.0 0.9	17 00	0314 1000 1544 2244	0.d 1.d 0.d	, I	0346 1038 1614 2326	4.0 0.6 4.2 0.4	H	0424 1105 1630 1140	1.6 0.4 3.6 0.6
at	0214 0437 1455 7179	3.7 0.1 3.1 1.1	13 54	0356 LD47 1636 2331	3.6 0.8 3.9 6.8	.m	0304 0545 1541 2243	3.9 6.7 4.1 6.8	LU	0414 1101 1641 2342	3.6 0.6 3.4 0.6	1 10	0454 1146 1719	4.1 0.5 4.2	14 10	0517 1855 1727	3.7 0.7 3.5
2	0326 1008 1608 2304	1.5 0.1 4.6 0.9	15 60	0506 1146 1735	3.7 0.6 4.0	ш	0413 1106 1646 2352	4.1 0.6 4.3 0.5	11	0611 1151 1239	1.7 0.7 4.0	4 10	0016 6655 1246 1615	0.3 4.1 0.3 4.3	VI VI	5025 5605 1244 1413	0.5 3.4 0.4 3.5
5 00	M H 1111 1713	4.1 0.7 4.3		0022 0557 1234 1414	0.6 3.9 6.6 4.2	3 38A	0586 1231 1745	4.1 6.5 4.5	20 83	0027 0600 1214 1811	0.5 1.5 0.6 4.1	Ö	0119 0651 1346 1905	0.2 8.2 8.5 4.1	20 14	0113 8650 1136 1456	0.4 4.6 0.4 4.0
±0	0616 0538 1237 1117	0.7 4.3 0.5 4.5		0105 0640 1317 1055	0.4 4.1 0.5 4.1	-a	0051 0616 1369 1839	6.3 4.4 6.4 4.6	21 30		0.4 4.0 0.5 4.2	<u>.</u>	6269 6742 1429 1957	0.1 4.3 0.5 4.2	21 00	0155 0732 1414 1930	0.3 4.1 0.5 4.1
Ó	0115 0637 1314 1905	0.4 4.5 0.4 4.7	#t	0144 0756 1354 1427	0.4 4.2 0.4 4.4	ő	0141 0750 1401 1522	6.1 4.5 0.4 4.6	27 V1	6144 0770 1354 1516	0.1 8.1 0.5 4.2	,, ma	6255 6427 1515 2015	0.2 4.1 0.5 4.2	10 10	62 30 0413 1457 1615	0.1 4.1 0.5 4.1
MI.	6200 8730 1425 1433	0.3 4.6 0.3 4.1	1P 53	0220 0750 L430 L959	0.3 4.3 6.4 4.4	4	0754 0754 1449 2612	0.1 4.5 6.4 4.5	31 31	0234 6153 5434 2002	0.3 4.1 0.5 4.2	щ.	0314 0510 1551 2118	0.2 4.1 0.6 4.1	21	0130 0453 1541 2100	0.3 4.1 0.5 4.1
10 10	0245 0416 1517 1016	0.3 4.7 6.3 4.3	24 VE	0254 0825 1504 7030	0.3 4.3 6.5 4.4	3	0117 0141 1531 2651	0.1 4.5 6.4 4.6	24 00	0301 0614 3516 2014	0. 1 4.1 0. 5 4.2	:	0431 0452 1640 2301	0.3 4.2 0.6 4.0	14 M	0403 0934 1624 1147	d.3 4.2 d.5 4.3
A.C. 70	0140 0401 1545 1117	0.1 4.6 0.4 4.7	25	0 327 0656 1536 2161	0.4 4.3 0.5 4.1	10 60	0358 0526 1535 2134	6.2 4.4 6.5 4.1	25 LU	6016 6616 1514 2114	0.4 6.1 0.5 4.1	р5 11	6402 1015 1711 2744	0.4 6.2 0.7 3.4	10 15	0446 1617 1709 1228	0.4 4.2 0.5 4.1
14 14	0473 0445 1437 1347	0.2 4.5 0.5 4.5		0400 0430 1612 2132	0.4 4.1 0.6 4.2	ш	0441 200 1654 2248	0.1 4.3 0.6 4.1	76 84	0416 0447 1411 1111	0 4 4.1 0.6 4.1	11 2-	044) 1121 1404 2335	0.5 6.1 5.4	26 VT	0575 1301 1716 1715	0.4 4.2 0.5 4.0
1.7 00	0504 1074 1717 1315	0.1 4.4 0.4 4.3))	04/3 00/1 6/6 2/04	0.4 4.0 6.6 4.1	#	0021 1055 1734 2366	0.4 4,3 6.1 4.0	27 83	연류 27년 27년	0.4 6.0 0.6 6.0	ů. Li	0617 1206 1846	0.6 6.0 0.0	F.	МП ПМ ПМ7	0.4 4.2 0.4
70 1)	4545 1515 1745 2747	0.4 4.3 0.7) I	0467 1036 1721 2243	0.5 3.8 0.7 4.0	#I	7728 1854 1869	6.5 4.1 6.6 .8	30 20	06 M 1114 1744 2327	0. 5 6. ú 0. ř 3. †	Ü	1141 1100 0106 00M	1.6 0.7 3.6 0.6	ě	00 6 0704 1345 1541	1.5 0.4 4.3 0.1
ů O	06.26 1200 1146	d.5 4.3 0.5)4 #I	0544 124 054 2335	0,\$ 1.8 0,8 3.0	# •	0450 1730 1650	0, £ 1, 3 0, 8	0	7501 7501 7501	0 4 4.0 0 7	ļt pe	01/17 67/17 13/4 2044	1. 1 0. d 1. 7 0. 1	14 16	0117 0400 1347 7046	1.4 0.5 4.5 0.5
mt år	0071 0710 1307 1446	6.3 6.7 1.6 1.0	P	0424 #}{	0.4 1:1 6:1	44 TP	0100 0744 1338 2019	3.4 6.7 1.8 1.0	50 14	00円 0円 1円 11円	1.9	յդ Ար	0017 0017 1445 1110	0.4	10 #1	6221 6964 1448 1314	1.5 0.4 4.6 0.1
									90 91	의법 기업							
, inter	# A	# •	ì														

Figura 21. Tabla de Mareas Guayaquil (Rio Guayas 2020) Segundo Trimestre INOCAR, 2020

TABLA II.- PREDICCIÓN DIARIA DE MAREAS EN EL ECUADOR GUAYAQUEL (RÍO GUAYAS) 2020

~	MIIÓ				AGOSTO					SEPTEMBRE:							
		ALT. FIS.	BIA	HORA H JR.	ALT:	E	HEREA H.P.	ALT:	ELLA		4L.T.	ᄣ	4.4.	#17. #13.	BEA	E.V.	ALT. RS.
=¤ 16	127 114 552 100	1.6 0.6 4.0 0.4	1 <u>4</u>	0336 6002 1552 2247	1.¢ 0.5 1.6 0.7	ų	0526 2230 1745	1.8 4.7 3.7	i i	0412 1133 1706	3.6 0.5 3.7	1	0114 0709 1345 1524	0. 3 4. 0 0. 1 4. 0	16	0637 0623 1312 1634	4.1 4.1 4.3
	13# 125 154	1.5 0.6 1.5	ři L	0414 11647 1647 2345	1.5 0.5 1.6 0.6	2 20	6016 6628 L366 L844	3.4 3.5 4.6 1.5	i.	8085 8548 1237 1861	0.6 1.3 5.7 3.5	Ö	하반 1429 2604	6.2 4.1 6.3 4.1	T.	6134 6795 1465 1526	6.3 4.3 4.4 4.4
ντ 05 12	534 225 756	1.3 1.5 1.4	Ϋ́	6 52 6 E266 E715	1.7 9.4 1.6	ا ق	6333 6771 6461 1434	4.0 4.0 3.5	•	314) 841 1333 1344	0.5 4.8 0.6 4.2	3 N	4245 4425 1504 3134	0.2 4.2 0.3 4.6	n	8755 8755 1454 2665	4.1 4.1 4.1
Ä	637 121 151	0.3 4.0 0.4 4.0	15	6614 8614 1362 1424	9.4 3.5 6.7 3.5	-	0323 0866 1447 2014	4.3 4.1 0.4 4.0	**	81% 8718 1425 1544	0.4 4.3 4.4 4.3	12	432) 6455 1544 7666	8.3 4.2 6.4 4.5	15	3313 4634 1546 2161	4.5 4.5 4.5 4.5
BD 07	145 730 414	0.2 4.1 0.5 4.0	10	0 120 0 707 1 313 1 415	4.8 4.8 4.1	.S	01906 0844 1424 2054	4.7 4.3 4.6	36 70	원생 해년 1511 개만	0.3 4.4 0.3 4.4	33	0114 0134 1136 1146	0.4 4.6 0.5	11 20	6354 8622 6625 2146	4.5 6.1 4.4
ш М	734 541 521	0.2 4.1 0.5 4.0	11	0216 0752 1441 2001	0.4 4.1 0.5 4.1		0345 0918 1667 2129	0.3 4.3 4.6 4.0	21 VI	0373 0001 1600 1116	0.2 4.5 0.3	- å	6436 6514 1515 1213	0.5 4.0 0.5 1.5	ħ.		4.3 4.3 4.1
- N	122 557 546 104	0.4 4.2 0.1 4.0	¥	0 354 05 36 1 526 2046	6.1 6.3 6.4 4.1	.7	0431 0451 1642 1204	4.1 4.1 4.6	2) 36	6411 6544 1641 2203	0.2 4.5 0.2 4.4	.2	6454 18.86 12.49 12.49	0.5 0.6	12	104 104 135 131	4.1 6.3 4.9
■T 14	444 434 624 146	0.3 4.1 0.4 4.9) 1 Hu		4.1 4.1 4.4 4.1	۵,	6453 1671 1774 1774	4.1 0.6 1.9	23 60	8501 1037 1230 1240	0.2 4.4 0.3 4.2	-	1101 1101 1101 1101	0.6 9.7 0.6 8.5	Ö	1134 1134	1.1 1.5
JU 14	141 141 144 126	0.4 4.1 0.4 3.9).t	0414 1063 1761 2214	0.1 4.6 0.6 4.1	*	801 Hal Hel Hel	6.1 6.6 1.7	24 60	6545 1111 1415 2316	4.3 4.1 4.1	-	85 (d 1642 1848	9 4	34 B	1331 小野 133	1.6 6.7 1.6
×π #	154 741 164	0.1 4.1 0.7	H M	0514 1044 1747 2307	4.4 4.4 4.4	77	05 Va 11 W 18 M	4.6 1.6 4.7	ő	96275 12000 18001	0.1 4 t 0 4	ة ق	설명 설명 1988 1988	1. 4 0. 3 1. 4 0. 4	25	6111 6752 1136 2011	1.4 1.4 1.7
24 T	136 136	0.4 4.0 0.1	H. Di	1682 1115 1114 2314	4.1 4.1 4.4	Ö	000) 0410 0410	1.4 4.7 1.4 0.7	26 MX	60 H 67 H 11 G 11 G	1.4 6.6 1.4 6.5	11 11	0109 0724 1324 1444	1.3 1 1 1 1	77 M	0122 0584 1651 2150	1.4 4.4 1.4
1	120 137	0.4 1.3 0 \$	#	0644 1236 1433	4.1 4.4	Li Li		. 4 0 1 1 0	7.	01 15 66 17 11 64 71.01	1 ? 4.3 1.6	뷢		1.3 1.8 1.1 0.5	#		1.3 1.4 0.6
ti	70.0 70.0 10.0 54.7	1.1 0.6 1.7 0.6		0054 0740 1331 2032	1.9	li Ma	410 144 201	1.1	78 11	2044 1111 1211 1211	0.4	#	4414 158 128 128	1 : 1 : 1 : 1 :	10 11	1121	1.7
- D	14 L 75 E 400	3.4 0.6 1.4 0.6	Ħ	0114 0440 1442 2127	6.1	ų,	0111 0404 0111 0111	1.0 1.4 0.1	24	11) † 16) 4 164 4 164 6	0.d 0.d 0.5	14	11 fe 14 fe 11 fe 11 fe	1 5 1 7 0 7	*	000 t 0454 1230 1422	1.0 1.0 1.0
■F 04	10 54 51 14)	9.4	ĸ		9. 9	ü	0 1 L 10 T 10 T 2 100	10	10 00	111	1:	<u>#</u>	₩ ₩	0 ;	4		4.4 4.4 4.7
)1)1		11				11 LV								
-	-	٠.	1														

Figura 22. Tabla de Mareas Guayaquil (Rio Guayas 2020) Tercer Trimestre INOCAR, 2020

TABLA II.- PREDICCIÓN DIARIA DE MAREAS EN EL ECUADOR GUAYAQUEL (RÍX) GUAYAS) 2020

,—		OCT	ŲBJ			WOVIEMBRE							KJE	MP.	(E		
D CAR	HERA H.H.		BIA	HOLA H.M.	ALT. 175.	B1A	HULA H.M.	MT. MTS.	DEA	HENEA M.M.	ALE.	DEA	HENEA H.H.	ALE. BTS.	ОМ	HERA H.H.	4LT. 4TS.
Ö	0135 0727 1485 1565	0.2 4.1 0.2 4.1	16 P!		0.1 4.3 0.1 4.4	,1 m	0725 0755 1446 2023	0.4 3.9 0.1 4.0	LB LU	0216 0751 1456 2017	0.4 4.1 0.1 4.2	1 45	6212 6756 1451 2011	0.5 3.5 0.3 3.9	lii Pii	0300 0420 1523 1057	0.4 1.9 4.1
¥ť.	6215 6759 1442 1617	0.2 4.3 0.2 4.1	17 54	0202 0728 1432 1957	0.1 4.4 6.0 4.4	<u>а</u>	d258 db25 1519 2054	6.4 6.3 3.5	17	0317 0814 1542 2112	0.4 4.0 8.1 4.1	12 12	0301 0611 1527 2106	0.5 3.8 6.3 1.9	10 17	0346 0904 1607 1146	d.6 3.4 d.3 4.1
3 14	0255 0427 1516 2646	0.3 4.L 0.3 4.6	11. 100	0251 0814 1519 2044	0.2 4.4 0.0 4.4	3 3 0	0132 0556 1551 2126	0.4 3.8 6.4 3.8	阿 四	0402 0414 1634 2155	0.5 3.4 0.3 4.1	3 3	0345 0806 1601 2140	1.7	VI	0111 0548 1645 2227	0.4 3.4 0.4 4.5
4 00	8126 8854 1547 2116	0.4 4.6 0.4 4.6	15 16	0 337 0 056 1 603 2128	0.1 4.3 0.1 4.3	347	0406 0827 1623 2158	0.1 3.7 0.4 3.7	1 5 30	0444 1003 1709 2240	0.6 3. 4 0.4 4.0	45	0432 0941 3640 3716	0.6 3.7 0.5 3.#	Ή	0514 1032 1731 2306	0.7 3.7 0.5 4.6
10 1	0156 0573 1617 1146	0.4 3.9 8.4 3.4	36 84.	0421 0948 1647 2212	6.1 4.1 6.2 4.1	н 3	0434 1000 1658 2733	0.6 3.6 0.3 1.6	20 41	0533 3053 3753 2539	0.7 3.6 0.5 3.4	7	0608 1019 1714 2785	0. T 3. £ 0. 5 3. £	3ú 00	0515 1121 1113 2152	ú.7 3.4 6.4 3.9
~	8478 8454 1647 2421	0.5 3.1 0.5 1.7	21 41	0954 1025 1738 2259	0.5 1.8 6.3 4.0	i.	0514 1056 1740 2314	6.7 1.4 6.6 1.3	Ö	5676 3145 3643	0.7 1.4 0.6		6542 1104 1758 2341	0.7 1.6 0.6 1.4	21 ©	0646 1214 1857	0.L 3.5 0.7
HT.	0459 1627 1717 1257	0.4 3.4 4.4 3.5	117. 33	0544 1411 1415 7358	6.6 3.7 6.1 3.8	3	0557 1322 1800	5.7 3.4 6.6	12 00	6023 6715 1244 1915	0. # 1. 1 0. 7	<u>,,</u>	86 M 1200 1844	0. J 3. S 0. 6	H	0047 0738 1317 1347	1.1 0.4 3.4 6.L
1 0	85 1) 1104 1751 1114	0.7 1.5 0.4 3.4	Ü	0634 1,767 19 06	0.7 1.4 6.6	Ö	0000 0637 1322 1556	3.5 3.3 3.7	25 LU	0111 0022 1355 2040	1.6 3.4 3.2 0.4	4	0035 0137 1504 1538	1.d 0,7 3.5 0.6	Ji MT	0155 0430 1414 1047	1.7 0.6 1.3 0.5
Ö	棩	4.4 1.3 6.7	14	0044 0736 1334 2006	1.6 6.6 3.3 0.7	4	0101 0711 1 130 1 451	0.8 1.3 0.7	14	0214 0911 2505 2146	1.6 0 7 3 8 0.4	#3 #3	01.15 0437 2430 3041	1.4 0.7 3.6 0.7	24 10	0132 0442 1514 2544	1.6 0.1 1.3 1.0
10 10	0611 0615 1251 1917	1.3 4.4 1.3	35 80	0151 0354 1451 2121	3.1 6.2 6.7		0206 0643 1434 2434	0.5 0.5 0.8	21 14	6133 3633 3636 3253	1.6 0.6 1.4	js 2	62 P 64 U 31 P 3201	3. ¶ 0. 6 1. 7	15 15	51/7 (51/4 (11/4)	1.5 4.7 1.4 0.9
) L 00		1.1 0.4 0.4)¥ tu	0 350 030 454 221	5.7 1.1 6.1	±7;	(100m (100m (計算	1.8 0.7 1.7 0.7	34 30	04 M 11 12 11 14 15 14	1.6 0 4 0 4	ij	954) 1013 1114	6. 4 6. 4 6. 7	14 14	0127 1114 1114 1116	1.5 0.4 1.5
1) 10	0217 0004 1108 1100	0.1);	0416 1155 1762 2817	1.8 6.1 3.3 6.1	챼	0424 1423 1650 2663	1: 1: 0:	27 V1	1007 3711 3711	0. 4 3. 7	H	0444 1147 1774	1.0 0.1 1.9	17 80	談	4:4 4:5 1:4
11	614) 121) 210)	0.1 0.7	#I	0927 204 257	9:1	1.1 1/3	15 13		2	0013 0000 1100 1100	8.5	#	0015 044 1754 1877	0.6 0.2 4.0	/4 //	00 16 040 (1100) 1140	0,4 4,5 4,4 1,4
m† 34	0446 1146 1714	1.+ 0.4 1.+)÷	002a 0031 1,25a 1,641	0.4	#	0044 0141 1348 1847	0,4 4.7 6.1 4.7	24 00	01)5 0644 1514 10)1	0 1 0 2	<u>د</u> د د	011/ 0641 1167 1194	0. m 0 L 4 L	Ö	0125 0448 1144 1579	0,7 1.4 0.4 1.5
ti IV		0.1	10 41	0104 0611 1910	0.1 1.1 0.1	. T	0119 0701 (409 (419	4.0	ő			12	021) 071) 1414 3014		MT. 10	0105 0728 1475 1407	0 4 0,4 0,4
			Ö		6.1 1.8 6.1										11	0347 0408 1304 1044	0.4 0.4
	M A	41 .	ì														

Figura 23. Tabla de Mareas Guayaquil (Rio Guayas 2020) Cuarto Trimestre INOCAR, 2020

Figura 24. Toma del DAP del mangle rojo Pita, 2020

Figura 25. Toma de datos Pita, 2020

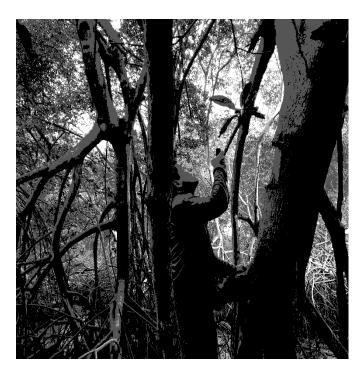


Figura 27. Toma de altura del mangle rojo Pita, 2020

Figura 26. Rotulación del mangle rojo Pita, 2020

Figura 29. Registro de datos de cada árbol Pita, 2020

Figura 28. Toma de coordenada y altura Pita, 2020



Figura 30. Cámara y Distanciómetro Pita, 2020

Figura 31. GPS Spectra precisión Pita, 2020

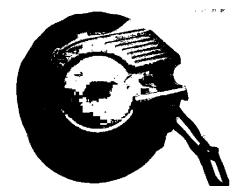


Figura 32. Cinta métrica Pita, 2020

Tabla 10. Coordenadas de Transecto 1

COORDENADAS DE TRANSECTO 1 PUNTO X Υ 1 628862,60 9757075,82 2 628850,36 9757060,51 3 628924,99 9756993,86 4 628938,78 9757009,26

Coordenadas UTM del transecto 1 Pita, 2020

Tabla 11. Coordenadas de árboles del Transecto 1

COORDENADAS DE ÁRBOLES DEL TRANSECTO 1

	X	Υ
T1_P1	628864,58	9757070,84
T1_P2	628861,32	9757061,49
T1_P3	628875,94	9757057,91
T1_P4	628883,72	9757055,39
T1_P5	628881,09	9757048,97
T1_P6	628894,34	9757045,92
T1_P7	628910,95	9757031,31
T1_P8	628911,27	9757012,70
T1_P9	628919,89	9757003,65

Coordenadas UTM de árboles de transecto 1 Pita, 2020

Tabla 12. Coordenadas de Transecto 2

COORDENADAS DE TRANSECTO 2							
PUNTO	X	Υ					
1	629015,26	9756936,60					
2	628995,70	9756941,14					
3	628974,19	9756843,56					
4	628994,55	9756839,61					

Coordenadas UTM del transecto 2 Pita, 2020

Tabla 13. Coordenadas de árboles del Transecto 2

COORDENADAS DE ÁRBOLES DEL TRANSECTO 2

	X	Υ
T2_P1	629012,29	9756933,19
T2_P2	628997,62	9756938,67
T2_P3	629008,32	9756925,23
T2_P4	629003,24	9756917,42
T2_P5	629007,08	9756906,72
T2_P6	628995,01	9756900,27
T2_P7	629004,34	9756894,65
T2_P8	628999,40	9756881,48
T2_P9	628985,14	9756872,84
T2_P10	628987,19	9756860,23
T2_P11	628994,05	9756852,82

Coordenadas UTM de árboles de transecto 2 Pita, 2020

Tabla 14. Coordenadas de Transecto 3

COORDENADAS DE TRANSECTO 3 PUNTO X Y 1 629105,33 9756820,63 2 629089,22 9756808,39 3 629153,52 9756731,21 4 629169,85 9756743,88

Coordenadas UTM del transecto 2 Pita, 2020

Tabla 15. Coordenadas de árboles del Transecto 3

COORDENADAS DE ÁRBOLES DEL TRANSECTO 3

	COORDENADAS DE ARBOLES DEI	L TRANSECTO 3
	X	Υ
T3_P1	629097,56	9756811,45
T3_P2	629107,92	9756813,78
T3_P3	629104,78	9756806,68
T3_P4	629115,03	9756804,81
T3_P5	629112,81	9756797,13
T3_P6	629113,51	9756789,21
T3_P7	629121,78	9756787,47
T3_P8	629130,39	9756787,82
T3_P9	629129,23	9756778,50
T3_P10	629137,49	9756776,29
T3_P11	629139,12	9756767,21
T3_P12	629141,10	9756759,88
T3_P13	629152,28	9756761,62
T3_P14	629157,28	9756751,03
T3_P15	629166,71	9756744,51

Coordenadas UTM de árboles de transecto 2 Pita, 2020

Tabla 16. Coordenadas de Transecto 4

COORDENADAS DE TRANSECTO 4 PUNTO Χ Υ 1 629301,35 9756554,86 2 9756547,39 629319,81 3 629284,27 9756453,84 4 629265,46 9756462,41

Coordenadas UTM de árboles de transecto 4 Pita, 2020

Tabla 17. Coordenadas de árboles del Transecto 4

COORDENDAS DE ÁRBOLES DE TRANSECTO 4

	X	Υ
T4_P1	629303,60	9756550,49
T4_P2	629315,35	9756543,49
T4_P3	629306,60	9756541,86
T4_P4	629303,10	9756528,62
T4_P5	629306,85	9756521,37
T4_P6	629293,72	9756513,37
T4_P7	629300,22	9756505,12
T4_P8	629289,97	9756500,24
T4_P9	629295,35	9756492,12
T4_P10	629279,85	9756487,37
T4_P11	629288,60	9756483,25
T4_P12	629283,22	9756471,25
T4_P13	629282,47	9756458,62

Coordenadas UTM de árboles de transecto 4 Pita, 2020

Tabla 18. Coordenadas del Transecto 5

COORDENADAS DE TRANSECTO 5 PUNTO X Y 1 629366,14 9756496,53 2 629349,96 9756485,35 3 629407,00 9756403,46 4 629423,09 9756415,44

Coordenadas UTM de árboles de transecto 5 Pita, 2020

Tabla 19. Coordenadas de transecto 5

COORDENADAS DE ÁRBOLES DEL TRANSECTO 5

	X	Υ
T5_P1	629366,04	9756492,50
T5_P2	629356,00	9756487,20
T5_P3	629371,35	9756486,27
T5_P4	629376,42	9756476,70
T5_P5	629384,39	9756467,81
T5_P6	629386,00	9756455,82
T5_P7	629388,08	9756449,47
T5_P8	629394,08	9756453,05
T5_P9	629398,58	9756442,78
T5_P10	629407,57	9756433,66
T5_P11	629412,88	9756423,63
T5_P12	629416,34	9756414,97

Coordenadas UTM de árboles de transecto 5 Pita, 2020

Tabla 20. Modelo de Regresión para Biomasa de Mangle Rojo (*Rhizophora mangle*)

ESPECIE		Ecuación	R ²	Valor
				р
	Tronco	BT= 6,73694+1,62817*DAP	0,930	0,005
Mangle Rojo (<i>Rhizophora</i> <i>mangle</i>)	Ramas	BR =0,05620+4,38617*DAP	0,702	0,048
	Hojas			
	Aérea	BA =6,15105+2,11882*DAP	0,949	0,003

Ecuaciones alométricas para cálculo de biomasa en el mangle rojo (*Rhizophora mangle*). Arnold De la Peña, 2010

Tabla 21. Carbono capturado por ecosistemas

T ha		
	T ha	equivalente a ha
000	55.4070	4440
386	55-1376	1416
62.6	22-117	230
364	53-1345	1336
	386 62.6 364	62.6 22-117

Carbono secuestrado por ecosistemas de manglar de México Vega, 2009

Tabla 22. Transecto 1 Árbol 1

TRC 1	ARBOL 1						
CODDENADAC	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
CORDENADAS	628864,581	9757070,844	32	0,10186	4,28		
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,0081	48714			
VOLUMEN DEL ARI	BOL (m3/ha)	0,017438248					
BIOMASA TRONCO	(ton/ha)	6,902783647					
BIOMASA RAMAS ((ton/ha)		0,5029	70563			
BIOMASA AÉREA (1	ton/ha)		6,3668	70728			
BIOMASA TOTAL D	EL FUSTE (ton/ha)		13,772	62494			
BIOMASA TOTAL A	ÉREA (ton/ha)		24,102	09364			
ESTIMACIÓN DE C	` ,	,					
(ton)		12,05104682					

Cálculos del árbol 1 del transecto 1

Pita, 2020

Tabla 23. Transecto 1 Árbol 2

TRC 1	ARBOL 2						
CORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
	628861,321	9757061,486	44	0,140056	6,42		
ÁREA BASAL DEL	ARBOL (m2/ha)		0,0154	06162			
VOLUMEN DEL AR	BOL (m3/ha)	0,049453782					
BIOMASA TRONCO	O (ton/ha)	6,964975014					
BIOMASA RAMAS	(ton/ha)	0,670509524					
BIOMASA AÉREA ((ton/ha)		6,4478	03501			
BIOMASA TOTAL D	DEL FUSTE (ton/ha)	14,08328804					
BIOMASA TOTAL A	NÉREA (ton/ha)	24,64575407					
ESTIMACIÓN DE C	ARBONO TOTAL		- 1,0 10				
(ton)			12,322	87703			
Cálculas dal árbal 2	dal transporta 1	·	·	·			

Cálculos del árbol 2 del transecto 1 Pita, 2020

Tabla 24. Transecto 1 Árbol 3

TRC 1	ARBOL 3						
CORDENADAS	Χ	X Y CAP (cm) DAP					
	628875,937	9757057,911	37	0,11777	4,15		
ÁREA BASAL DEL	ARBOL (m2/ha)		0,0108	9413			
VOLUMEN DEL AR	BOL (m3/ha)	0,022605321					
BIOMASA TRONCO	(ton/ha)	6,928696716					
BIOMASA RAMAS ((ton/ha)		0,5727	0,572778463			
BIOMASA AÉREA (6,40059	92717				
BIOMASA TOTAL D	OTAL DEL FUSTE (ton/ha) 13,9020679						
BIOMASA TOTAL A	ÉREA (ton/ha)		24,3286	61882			
ESTIMACIÓN DE C			,				
(ton)		12,164	30941				

Cálculos del árbol 3 del transecto 1

Tabla 25. Transecto 1 Árbol 4

TRC 1		ARBOL 4						
CORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)			
CORDENADAS	628883,718	9757055,387	52	0,16552	8,26			
ÁREA BASAL DEL	ARBOL (m2/ha)		0,0215	517698				
VOLUMEN DEL AR	BOL (m3/ha)		0,0888	368093				
BIOMASA TRONCO	(ton/ha)		7,0064	135926				
BIOMASA RAMAS ((ton/ha)		0,7822	202165				
BIOMASA AÉREA (ton/ha)		6,5017	758683				
BIOMASA TOTAL D	EL FUSTE (ton/ha)		14,290	39677				
BIOMASA TOTAL A	ÉREA (ton/ha)		•	319435				
ESTIMACIÓN DE C				-				
(ton)		12,50409718						
Cálculos del árbol 4 o	del transecto 1							

Cálculos del árbol 4 del transecto 1

Pita, 2020

Tabla 26. Transecto 1 Árbol 5

TRC 1		ARBOL 5						
COORDENADAS	X	Υ	DAP (m)	ALTURA (m)				
	628881,089	9757048,973	49	0,155971	7,61			
ÁREA BASAL DEL A	RBOL (m2/ha)		0,019	106506				
VOLUMEN DEL ARE	BOL (m3/ha)	0,072700256						
BIOMASA TRONCO	(ton/ha)	6,990888084						
BIOMASA RAMAS (t	on/ha)	0,740317424						
BIOMASA AÉREA (to	on/ha)		6,481	52549				
BIOMASA TOTAL DE	OMASA TOTAL DEL FUSTE (ton/ha) 14,212731							
BIOMASA TOTAL A	ÉREA (ton/ha)	24,87227925						
ESTIMACIÓN DE CA	ARBONO TOTAL							
(ton)	12,43613962							
Cálculos del árbol 5 d	el transecto 1							

Cálculos del árbol 5 del transecto 1 Pita, 2020

Tabla 27. Transecto 1 Árbol 6

TRC 1	ARBOL 6						
COORDENADAS	X	X Y CAP		DAP (m)	ALTURA (m)		
	628894,338	9757045,924	6,75				
ÁREA BASAL DEL A	RBOL (m2/ha)		0,012	732366			
VOLUMEN DEL ARB	OL (m3/ha)		0,0429	971734			
BIOMASA TRONCO		6,9442	244558				
BIOMASA RAMAS (to		0,6146	663203				
BIOMASA AÉREA (to	on/ha)		6,420	82591			
BIOMASA TOTAL DE		13,979	973367				
BIOMASA TOTAL AÉ	24,46453393						
ESTIMACIÓN DE CA	RBONO TOTAL		•				
(ton)			12,232	226696			

Cálculos del árbol 6 del transecto 1

Tabla 28. Transecto 1 Árbol 7

TRC 1	ARBOL 7						
COORDENADAS	X Y		CAP (cm)	DAP (m)	ALTURA (m)		
	628910,951	9757031,308 43 0,13687 5,6					
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0147	′1384			
VOLUMEN DEL ARE	3OL (m3/ha)	0,041198752					
BIOMASA TRONCO	(ton/ha)	6,9597924					
BIOMASA RAMAS (t	con/ha)	0,656547944					
BIOMASA AÉREA (to	on/ha)		6,4410	59104			
BIOMASA TOTAL DI	EL FUSTE (ton/ha)		14,057	39945			
BIOMASA TOTAL A	ÉREA (ton/ha)		24,600	44903			
ESTIMACIÓN DE CA			,				
(ton)		12,300	22452				

Cálculos del árbol 7 del transecto 1

Pita, 2020

Tabla 29. Transecto 1 Árbol 8

TRC 1	ARBOL 8						
COORDENADAS	Χ	Υ	DAP (m)	ALTURA (m)			
COORDENADAS	628911,267	9757012,697	57	0,18144	10,69		
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,0258	35466			
VOLUMEN DEL ARE	3OL (m3/ha)	0,138193158					
BIOMASA TRONCO	(ton/ha)	7,032348995					
BIOMASA RAMAS (ton/ha)	0,852010065					
BIOMASA AÉREA (t	on/ha)	6,535480672					
BIOMASA TOTAL D	EL FUSTE (ton/ha)	14,41983973					
BIOMASA TOTAL A	ÉREA (ton/ha)	25,23471953					
ESTIMACIÓN DE CA	-,						
(ton)			12,617	35977			
Cálculos dal árbal 8 a	lal transporta 1						

Cálculos del árbol 8 del transecto 1 Pita, 2020

Tabla 30. Transecto 1 Árbol 9

TRC 1		ARBOL 9					
COORDENADAS	Χ	Υ	DAP (m)	ALTURA (m)			
	628919,889	9757003,654	45	0,14324	7,58		
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,016	1144			
VOLUMEN DEL ARE	3OL (m3/ha)	0,061073577					
BIOMASA TRONCO	(ton/ha)	6,970157628					
BIOMASA RAMAS (t	ton/ha)	0,684471104					
BIOMASA AÉREA (t	on/ha)		6,4545	47899			
BIOMASA TOTAL D	EL FUSTE (ton/ha)	14,10917663					
BIOMASA TOTAL AI	ÉREA (ton/ha)	REA (ton/ha) 24,6910591					
ESTIMACIÓN DE CA	ARBONO TOTAL						
(ton)			12,345	52955			

Cálculos del árbol 9 del transecto 1

Tabla 31. Transecto 2 Árbol 1

TRC 2	ARBOL 1						
COORDENADAS	X	Υ	DAP (m)	ALTURA (m)			
	629012,292	9756933,187	35	0,11141	4,23		
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0097	48217			
VOLUMEN DEL ARB	OL (m3/ha)	0,02061748					
BIOMASA TRONCO	(ton/ha)	6,918331488					
BIOMASA RAMAS (to	on/ha)		0,5448	55303			
BIOMASA AÉREA (to		6,3871	03922				
BIOMASA TOTAL DE		13,850	29071				
BIOMASA TOTAL AÉ		24,238					
ESTIMACIÓN DE CA			,				
(ton)		12,11900437					
Cálculos del árbol 1 de	al transacto 2						

Cálculos del árbol 1 del transecto 2 Pita, 2020

Tabla 32. Transecto 2 Árbol 2

TRC 2	ARBOL 2						
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
	628997,617	9756938,673	42	0,13369	6,15		
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,0140	37433			
VOLUMEN DEL ARE	3OL (m3/ha)	0,043165107					
BIOMASA TRONCO	(ton/ha)	6,954609786					
BIOMASA RAMAS (t	ton/ha)	0,642586364					
BIOMASA AÉREA (to	on/ha)	6,434314706					
BIOMASA TOTAL DI	EL FUSTE (ton/ha)	14,03151086					
BIOMASA TOTAL A	ÉREA (ton/ha)	24,555144					
ESTIMACIÓN DE CA	,		,				
(ton)			12,27	7572			
Cálculos dal árbol 2 d	lal transacta 2						

Cálculos del árbol 2 del transecto 2 Pita, 2020

Tabla 33. Transecto 2 Árbol 3

TRC 2	ARBOL 3						
COORDENADAS	X	Υ	ALTURA (m)				
COORDENADAS	629008,315	9756925,233	47	77079 22856 94264 36695 95381 66918	11,5		
ÁREA BASAL DEL AI	RBOL (m2/ha)		0,0175	78622			
VOLUMEN DEL ARB	OL (m3/ha)	0,101077079					
BIOMASA TRONCO	(ton/ha)	6,980522856					
BIOMASA RAMAS (to	on/ha)		0,7123	94264			
BIOMASA AÉREA (to	SIOMASA AÉREA (ton/ha)		6,4680	36695			
BIOMASA TOTAL DE	L FUSTE (ton/ha)		14,16095381				
BIOMASA TOTAL AÉ	,		24,781				
ESTIMACIÓN DE CA	` ,		, -				
(ton)			12,390	83459			

Cálculos del árbol 3 del transecto 2

Tabla 34. Transecto 2 Árbol 4

TRC 2	ARBOL 4						
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	629003,24	9756917,415	39	0,12414 103705 968153 061944 701623 081513 384508	7,1		
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0121	03705			
VOLUMEN DEL ARE	3OL (m3/ha)	0,042968153					
BIOMASA TRONCO	(ton/ha)	6,939061944					
BIOMASA RAMAS (t	on/ha)	0,600701623					
BIOMASA AÉREA (to	on/ha)	6,414081513					
BIOMASA TOTAL DI	EL FUSTE (ton/ha)	13,95384508					
BIOMASA TOTAL A	ÉREA (ton/ha)	24,41922889					
ESTIMACIÓN DE CA	,		,				
(ton)			12,209	61445			
Cálculos del árbol 4 d	lel transecto 2						

Cálculos del árbol 4 del transecto 2 Pita, 2020

Tabla 35. Transecto 2 Árbol 5

ARBOL 5						
Υ	CAP (cm)	DAP (m)	ALTURA (m)			
9756906,718	49	0,15597 106506 304367 388084 317424 52549 12731 227925	8,72			
	0,019106506					
	0,083304367					
6,990888084						
	0,740317424					
	6.48152549					
	14.212731					
	24.87227925					
	,					
	12,436	13962				
	Υ	Y CAP (cm) 9756906,718 49 0,0191 0,0833 6,9908 0,7403 6,4815 14,21 24,872	Y 9756906,718 CAP (cm) DAP (m) 0,15597 0,019106506 0,083304367 6,990888084 0,740317424 6,48152549			

Cálculos del árbol 5 del transecto 2 Pita, 2020

Tabla 36. Transecto 2 Árbol 6

TRC 2		ARBO	L 6				
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	628995,011	995,011 9756900,272 51 0,16234 n2/ha) 0,020698052 ha) 0,094383117 7,001253312 0,768240584 6,495014286 E (ton/ha) 14,26450818 n/ha) 24,96288932	9,12				
ÁREA BASAL DEL A	RBOL (m2/ha)	0,020698052					
VOLUMEN DEL ARB	OL (m3/ha)	0,094383117					
BIOMASA TRONCO	(ton/ha)	7,001253312					
BIOMASA RAMAS (to	on/ha)		0,7682	40584			
BIOMASA AÉREA (to	n/ha)		6,4950°	14286			
BIOMASA TOTAL DE	L FUSTE (ton/ha)	14,26450818					
BIOMASA TOTAL AÉ	,						
ESTIMACIÓN DE CA	RBONO TOTAL (ton)		12,481	44466			
0/1 1 11/1 10 1	1.4						

Cálculos del árbol 6 del transecto 2

Tabla 37. Transecto 2 Árbol 7

TRC 2	ARBOL 7					
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629004,337	9756894,649		10,95		
ÁREA BASAL DEL AI	RBOL (m2/ha)		0,0168	38554		
VOLUMEN DEL ARB	OL (m3/ha)	0,092191081				
BIOMASA TRONCO	(ton/ha)	6,975340242				
BIOMASA RAMAS (to	on/ha)		0,6984	32684		
BIOMASA AÉREA (to	n/ha)		6,4612	92297		
BIOMASA TOTAL DE	L FUSTE (ton/ha)	14.13506522				
BIOMASA TOTAL AÉ	REA (ton/ha)		•			
ESTIMACIÓN DE CA	RBONO TOTAL (ton)		•			
Cálculos del árbol 7 de			, , , , , , , , , , , , , , , , , , ,			

Cálculos del árbol 7 del transecto 2

Pita, 2020

Tabla 38. Transecto 2 Árbol 8

TRC 2		AR	BOL 8				
COORDENADAS	Χ	Υ	DAP (m)	ALTURA (m)			
COORDENADAS	628999,4	9756881,483	CAP (cm) 45	0,14324 61144 334821 157628 471104 547899 917663	9,35		
ÁREA BASAL DEL A	RBOL (m2/ha)		0,016	1144			
VOLUMEN DEL ARB	OL (m3/ha)	0,075334821					
BIOMASA TRONCO	(ton/ha)	6,970157628					
BIOMASA RAMAS (to	on/ha)	0,684471104					
BIOMASA AÉREA (to	on/ha)		6,4545	47899			
BIOMASA TOTAL DE	EL FUSTE (ton/ha)	14,10917663					
BIOMASA TOTAL AÉ	REA (ton/ha)		24,6910591				
ESTIMACIÓN DE CA	RBONO TOTAL		,				
(ton)			12,345	52955			
Cálculos del árbol 8 de	al transacto 2						

Cálculos del árbol 8 del transecto 2 Pita, 2020

Tabla 39. Transecto 2 Árbol 9

TRC 2	ARBOL 9						
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	628985,137	9756872,842	38	0,12096	8,31		
ÁREA BASAL DEL AI	RBOL (m2/ha)		0,0114	19096			
VOLUMEN DEL ARB	OL (m3/ha)	0,047744939					
BIOMASA TRONCO	(ton/ha)	6,93387933					
BIOMASA RAMAS (to	on/ha)	0,586740043					
BIOMASA AÉREA (to	n/ha)		6,4073	37115			
BIOMASA TOTAL DE	L FÚSTE (ton/ha)	13,92795649					
BIOMASA TOTAL AÉ	REA (ton/ha)	24,37392385					
ESTIMACIÓN DE CA			- 1,0 - 0				
(ton)			12,186	96193			

Cálculos del árbol 9 del transecto 2

Tabla 40. Transecto 2 Árbol 10

TRC 2	ARBOL 10						
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	628987,194	9756860,225	49	0,15597	9,32		
ÁREA BASAL DEL A	RBOL (m2/ha)	0,019106506					
VOLUMEN DEL ARE	0,089036319						
BIOMASA TRONCO	6,990888084						
BIOMASA RAMAS (t	on/ha)	0,740317424					
BIOMASA AÉREA (to	on/ha)	6,48152549					
BIOMASA TOTAL DI	EL FUSTE (ton/ha)	14,212731					
BIOMASA TOTAL A	EREA (ton/ha)	24,87227925					
ESTIMACIÓN DE CA	ARBONO TOTAL		, -				
(ton)			12,436	13962			
Cálculos del árbol 10	del transecto 2						

Tabla 41. Transecto 2 Árbol 11

Pita, 2020

TRC 2		ARE	3OL 11				
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	628994,051	9756852,819	58	0,18462	12,45		
ÁREA BASAL DEL A	ARBOL (m2/ha)	0,026769799					
VOLUMEN DEL ARE	3OL (m3/ha)	0,166641998					
BIOMASA TRONCO	(ton/ha)	7,037531609					
BIOMASA RAMAS (t	ton/ha)	0,865971645					
BIOMASA AÉREA (t	on/ha)	6,54222507					
BIOMASA TOTAL D	EL FUSTE (ton/ha)	14,44572832					
BIOMASA TOTAL AI	ÉREA (ton/ha)	25,28002457					
ESTIMACIÓN DE CA	ARBOÑO TOTAL		-,				
(ton)			12,640	01228			
Cálculos del árbol 11	del transecto 2						

Cálculos del árbol 11 del transecto 2 Pita, 2020

Tabla 42. Transecto 3 Árbol 1

TRC 3	ARBOL 1						
COODDENIADAC	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	629097,562	9756811,45	48	0,15279 3334607 3880825 570547 6355844 4781092 3684241	9,15		
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0183	334607			
VOLUMEN DEL ARB	OL (m3/ha)	0,083880825					
BIOMASA TRONCO	(ton/ha)	6,98570547					
BIOMASA RAMAS (to	on/ha)	0,726355844					
BIOMASA AÉREA (to	on/ha)		6,474781092				
BIOMASA TOTAL DE	EL FÚSTE (ton/ha)	14,18684241					
BIOMASA TOTAL AÉ	REA (ton/ha)	24,82697421					
ESTIMACIÓN DE CA			,-				
(ton)			12,413	348711			

Cálculos del árbol 1 del transecto 3 Pita, 2020 Tabla 43. Transecto 3 Árbol 2

TRC 3	ARBOL 2						
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	629107,923	Y CAP (cm) DAP (m) 77,923 9756813,778 55 0,17507 (ha) 0,024072129 0,125415791 7,021983768 0,824086905 6,521991877 (ton/ha) 14,36806255 25,14410946 DTAL (ton) 12,57205473	10,42				
ÁREA BASAL DEL AF	RBOL (m2/ha)		0,0240	72129			
VOLUMEN DEL ARBO	OL (m3/ha)	0,125415791					
BIOMASA TRONCO ((ton/ha)	7,021983768					
BIOMASA RAMAS (to	n/ha)	0.824086905					
BIOMASA AÉREA (to	n/ha)		6,5219	91877			
BIOMASA TOTAL DE	L FUSTE (ton/ha)	14,36806255					
BIOMASA TOTAL AÉ	25,14410946						
ESTIMACIÓN DE CA	RBONO TOTAL (ton)		12,572	05473			
Cálculos dal árbal 2 da	l transporto 2		•				

Cálculos del árbol 2 del transecto 3

Pita, 2020

Tabla 44. Transecto 3 Árbol 3

TRC 3	ARBOL 3				
COORDENADAS	X 629104,78	Y 9756806,676	CAP (cm) 61	DAP (m) 0,194169	ALTURA (m) 11,25
ÁREA BASAL DEL AF	RBOL (m2/ha) 0,029610708				
VOLUMEN DEL ARBO	OL (m3/ha)	0,166560232			
BIOMASA TRONCO (ton/ha)	7,053079451			
BIOMASA RAMAS (to	n/ha)		0,9078	56385	
BIOMASA AÉREA (to	n/ha)		6,5624	58263	
BIOMASA TOTAL DE	BIOMASA TOTAL DEL FUSTE (ton/ha)		14,52	33941	
BIOMASA TOTAL AÉREA (ton/ha)		25,41593967			
ESTIMACIÓN DE CAI	RBONO TOTAL (ton)		12,707	96984	
Cálculos del árbol 3 de	, , , , , , , , , , , , , , , , , , , ,				

Cálculos del árbol 3 del transecto 3

Pita, 2020

Tabla 45. Transecto 3 Árbol 4

TRC 3	ARBOL 4				
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)
COORDENADAS	629115,025	9756804,814	59	59 0,187802	10,41
ÁREA BASAL DEL A	RBOL (m2/ha) 0,027700853				
VOLUMEN DEL ARBOL (m3/ha)		0,14418294			
BIOMASA TRONCO	(ton/ha)		7,0427	14223	
BIOMASA RAMAS (to		0,8799	33225		
BIOMASA AÉREA (ton/ha)			6,5489	69468	
BIOMASA TOTAL DEL FUSTE (ton/ha)			14,471	61692	
BIOMASA TOTAL AÉREA (ton/ha)		25,3253296			
ESTIMACIÓN DE CA	RBONO TOTAL (ton)		12,662	26648	

Cálculos del árbol 4 del transecto 3

Tabla 46. Transecto 3 Árbol 5

TRC 3	ARBOL 5				
COODDENADAC	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)
COORDENADAS	629112,813	9756797,13	45	0,143239	9,99
ÁREA BASAL DEL A	RBOL (m2/ha)	a) 0,0161144			
VOLUMEN DEL ARBOL (m3/ha)		0,08049143			
BIOMASA TRONCO (ton/ha)			6,970	157628	
BIOMASA RAMAS (ton/ha)			0,684	471104	
BIOMASA AÉREA (ton/ha)			6,454	547899	
BIOMASA TOTAL DEL FUSTE (ton/ha)			-	917663	
BIOMASA TOTAL AÉ	AÉREA (ton/ha) 24.6910591		24,6910591		
ESTIMACIÓN DE CA	RBONO TOTAL (ton)	12,34552955			
Cálculos del árbol 5 de	al transacto 3				

Cálculos del árbol 5 del transecto 3

Pita, 2020

Tabla 47. Transecto 3 Árbol 6

TRC 3	ARBOL 6				
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)
COORDENADAS	629113,511	9756789,214	, , , , , ,	9,12	
ÁREA BASAL DEL A	RBOL (m2/ha) 0,019106506				
VOLUMEN DEL ARBOL (m3/ha)		0,087125668			
BIOMASA TRONCO	(ton/ha)	6,990888084			
BIOMASA RAMAS (to		0,7403	17424		
BIOMASA AÉREA (ton/ha)			6,481	52549	
BIOMASA TOTAL DEL FUSTE (ton/ha)			14,21	2731	
BIOMASA TOTAL AÉREA (ton/ha)		24,87227925			
ESTIMACIÓN DE CARBONO TOTAL (ton)		•			
Cálculos del árbol 6 de	al transacto 3	,			

Cálculos del árbol 6 del transecto 3

Pita, 2020

Tabla 48. Transecto 3 Árbol 7

TRC 3	ARBOL 7				
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)
COORDENADAS	629121,777	9756787,468	38	0,120957	5,64
ÁREA BASAL DEL AF	ARBOL (m2/ha) 0,01149096				
VOLUMEN DEL ARBOL (m3/ha)		0,032404507			
BIOMASA TRONCO (ton/ha)		6,9338	37933	
BIOMASA RAMAS (ton/ha)			0,5867	40043	
BIOMASA AÉREA (ton/ha)			6,4073	37115	
BIOMASA TOTAL DEL FUSTE (ton/ha)		13,92795649			
BIOMASA TOTAL AÉ					
ESTIMACIÓN DE CA	RBONO TOTAL (ton)				

Cálculos del árbol 7 del transecto 3

Tabla 49. Transecto 3 Árbol 8

TRC 3	ARBOL 8				
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)
COORDENADAS	629130,392	9756787,817	, , , , ,	7,54	
ÁREA BASAL DEL AI	ARBOL (m2/ha) 0,014037433				
VOLUMEN DEL ARBOL (m3/ha)			0,052921123		
BIOMASA TRONCO		6,954609786			
BIOMASA RAMAS (ton/ha)			0,6425	86364	
BIOMASA AÉREA (ton/ha)			6,4343	14706	
BIOMASA TOTAL DEL FUSTE (ton/ha)			14,031		
BIOMASA TOTAL AÉ	ÉREA (ton/ha) 24,555144				
ESTIMACIÓN DE CA	RBONO TOTAL (ton)	·			
	1 -				

Cálculos del árbol 8 del transecto 3

Pita, 2020

Tabla 50. Transecto 3 Árbol 9

TRC 3	ARBOL 9				
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)
COORDENADAS	629129,228	9756778,504	, , , , ,	14,56	
ÁREA BASAL DEL AF	ARBOL (m2/ha) 0,023204736				
VOLUMEN DEL ARBOL (m3/ha)		0,168930481			
BIOMASA TRONCO (7,0168	01154		
BIOMASA RAMAS (to		0,8101	25325		
BIOMASA AÉREA (to		6,5152	47479		
BIOMASA TOTAL DEL FUSTE (ton/ha)			14,342	17396	
BIOMASA TOTAL AÉ	ÉREA (ton/ha) 25,09880443				
ESTIMACIÓN DE CAI					
	, , , , , , , , , , , , , , , , , , , ,				

Cálculos del árbol 9 del transecto 3 Pita, 2020

Tabla 51. Transecto 3 Árbol 10

ARBOL 10				
X	Υ	CAP (cm)	DAP (m)	ALTURA (m)
9137,493	9756776,292	46	0,146422	13,65
ARBOL (m2/ha) 0,016838554				
VOLUMEN DEL ARBOL (m3/ha)		0,114923128		
BIOMASA TRONCO (ton/ha)			40242	
BIOMASA RAMAS (ton/ha)		0,6984	32684	
BIOMASA AÉREA (ton/ha)		6,4612	92297	
BIOMASA TOTAL DEL FUSTE (ton/ha)		,		
AÉREA (ton/ha) 24,73636414		36414		
RBONO TOTAL (ton) 12,36818207				
	9137,493 (m2/ha) 3/ha)) TE (ton/ha) ton/ha)	X Y 9137,493 9756776,292 (m2/ha) 3/ha) b) TE (ton/ha) ton/ha)	X Y CAP (cm) 9137,493 9756776,292 46 (m2/ha) 0,0168 3/ha) 0,1149 0) 6,9753 0,6984 6,4612 TE (ton/ha) 14,135 ton/ha) 24,736	X Y CAP (cm) DAP (m) 9137,493 9756776,292 46 0,146422 (m2/ha) 0,016838554 0,114923128 0,6975340242 0,698432684 6,461292297 0TE (ton/ha) 14,13506522 24,73636414

Cálculos del árbol 10 del transecto 3

Tabla 52. Transecto 3 Árbol 11

TRC 3	ARBOL 11				
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)
COORDENADAS	629139,123	9756767,211	50	0,159155	14,26
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0198	94321	
VOLUMEN DEL ARBOL (m3/ha)		0,141846511			
BIOMASA TRONCO	6,996070698				
BIOMASA RAMAS (to	BIOMASA RAMAS (ton/ha)		0,7542	79004	
BIOMASA AÉREA (ton/ha)			6,4882	69888	
BIOMASA TOTAL DEL FUSTE (ton/ha)			14,238		
BIOMASA TOTAL AÉ	REA (ton/ha)	24,91758428			
ESTIMACIÓN DE CA	RBONO TOTAL (ton)		12,458		
Cálculos del árbol 11 (del transecto 3		,		

Cálculos del árbol 11 del transecto 3

Pita, 2020

Tabla 53. Transecto 3 Árbol 12

TRC 3	ARBOL 12				
COORDENADAS	X 629141,102	Y 9756760	CAP (cm) 56	DAP (m) 0,178253	ALTURA (m) 15,17
ÁREA BASAL DEL AFRA	,	0,024955437			
VOLUMEN DEL ARBOL (m3/ha) BIOMASA TRONCO (ton/ha)		0,189286988 7,027166381			
BIOMASA RAMAS (to BIOMASA AÉREA (to	n/ha)	0,838048485 6,528736275			
BIOMASA TOTAL DE BIOMASA TOTAL AÉ	,				
ESTIMACIÓN DE CAI	· /		12,5	9470725	

Cálculos del árbol 12 del transecto 3 Pita, 2020

Tabla 54. Transecto 3 Árbol 13

TRC 3	ARBOL 13					
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629152,278	9756761,623	40	0,127324	8,45	
ÁREA BASAL DEL AR	ARBOL (m2/ha) 0,012732366					
VOLUMEN DEL ARBO	0,053794245					
BIOMASA TRONCO (ton/ha)	6,944244558				
BIOMASA RAMAS (to	n/ha)		0,6146	63203		
BIOMASA AÉREA (tor	n/ha)		6,4208	32591		
BIOMASA TOTAL DEI	L FUSTE (ton/ha)		13,979	73367		
BIOMASA TOTAL AÉI	AÉREA (ton/ha) 24,46453		53393			
ESTIMACIÓN DE CAF	,					

Cálculos del árbol 13 del transecto 3

Tabla 55. Transecto 3 Árbol 14

ARBOL 14		TRC 3	
Y CAP (cm) DAP (m) ALTURA (m) 9756751,029 46 0,146422 10,22	X 629157,284	COORDENADAS	
0,016838554	. ARBOL (m2/ha)	ÁREA BASAL DEL A	
0,086045009	VOLUMEN DEL ARBOL (m3/ha)		
6,975340242	BIOMASA TRONCO (ton/ha)		
0,698432684	BIOMASA RAMAS (ton/ha)		
6,461292297	BIOMASA AÉREA (ton/ha)		
14,13506522	BIOMASA TOTAL DEL FUSTE (ton/ha)		
24,73636414	AÉREA (ton/ha)	BIOMASA TOTAL A	
12,36818207	CARBONO TOTAL (ton)	ESTIMACIÓN DE CA	
0,698432684 6,461292297 14,13506522 24,73636414	(ton/ha) (ton/ha) DEL FUSTE (ton/ha) AÉREA (ton/ha) CARBONO TOTAL (ton)	BIOMASA RAMAS (t BIOMASA AÉREA (t BIOMASA TOTAL DI BIOMASA TOTAL AI	

Cálculos del árbol 14 del transecto 3

Pita, 2020

Tabla 56. Transecto 3 Árbol 15

TRC 3	ARBOL 15						
COODDENADAC	X	Υ	CAP (cm)		ALTURA (m)		
COORDENADAS	629166,714	9756744,51	58		16,25		
ÁREA BASAL DEL AF	RBOL (m2/ha)		0,026	769799			
VOLUMEN DEL ARBO	OL (m3/ha)		0,217	504615			
BIOMASA TRONCO ((ton/ha)		7,037	531609			
BIOMASA RAMAS (to	n/ha)		0,865	971645			
BIOMASA AÉREA (to	n/ha)		6,542	22507			
BIOMASA TOTAL DE	L FUSTE (ton/ha)		14,44	572832			
BIOMASA TOTAL AÉ	REA (ton/ha)		25,28	002457			
ESTIMACIÓN DE CAI	RBONO TOTAL (ton)		•				
Cálculos dal árbal 15 d	lal transporta 2		·				

Cálculos del árbol 15 del transecto 3 Pita, 2020

Tabla 57. Transecto 4 Árbol 1

TRC 4		ARBO	OL 1		
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)
COORDENADAS	629303,597	9756550,488	62	0,19735	17,21
ÁREA BASAL DEL AF	RBOL (m2/ha)		0,0305	89509	
VOLUMEN DEL ARBO	OL (m3/ha)		0,2632	22721	
BIOMASA TRONCO ((ton/ha)		7,0582	62065	
BIOMASA RAMAS (to	n/ha)		0,9218	17965	
BIOMASA AÉREA (to	n/ha)		6,5692	02661	
BIOMASA TOTAL DE	L FUSTE (ton/ha)		14,549	28269	
BIOMASA TOTAL AÉ	REA (ton/ha)		25,461	24471	
ESTIMACIÓN DE CA	RBONO TOTAL		·		
(ton)			12,730	62236	

Cálculos del árbol 1 del transecto 4

Tabla 58. Transecto 4 Árbol 2

TRC 4		ARBO)L 2		
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)
COORDENADAS	629315,345	9756543,489	57	0,18144 35466 76175 48995 10065 80672 83973 71953	15,74
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0258	5466	
VOLUMEN DEL ARE	BOL (m3/ha)		0,2034	76175	
BIOMASA TRONCO		7,0323	48995		
BIOMASA RAMAS (t		0,8520	10065		
BIOMASA AÉREA (ton/ha)			6,5354	30672	
BIOMASA TOTAL DEL FUSTE (ton/ha)			14,419	33973	
BIOMASA TOTAL AÉ	ÉREA (ton/ha)		25,234 ⁻	71953	
ESTIMACIÓN DE CA	ARBONO TOTAL		•		
(ton)			12,617	35977	
Cálculos del árbol 2 d	al transporta 4				

Cálculos del árbol 2 del transecto 4 Pita, 2020

Tabla 59. Transecto 4 Árbol 3

TRC 4	ARBOL 3						
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	629306,596	9756541,864	37	0,11777	9,26		
ÁREA BASAL DEL A	RBOL (m2/ha)		0,010	89413			
VOLUMEN DEL ARE	3OL (m3/ha)	0,050439824					
BIOMASA TRONCO	(ton/ha)	6,928696716					
BIOMASA RAMAS (t	on/ha)		0,5727	78463			
BIOMASA AÉREA (to	on/ha)		6,4005	92717			
BIOMASA TOTAL DI	EL FUSTE (ton/ha)		13,90	20679			
BIOMASA TOTAL A	ÉREA (ton/ha)		24,328	61882			
ESTIMACIÓN DE CA	ARBONO TOTAL		•				
(ton)			12,164	30941			

Cálculos del árbol 3 del transecto 4 Pita, 2020

Tabla 60. Transecto 4 Árbol 4

rabia 60. Transect	O 4 AIDOI 4					
TRC 4		ARI	BOL 4			
COODDENADAC	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629303,097	9756528,616	55	0,17507	14,95	
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0240	72129		
VOLUMEN DEL ARE	3OL (m3/ha)	0,179939163				
BIOMASA TRONCO	(ton/ha)		7,0219	983768		
BIOMASA RAMAS (t	con/ha)		0,8240	86905		
BIOMASA AÉREA (to	on/ha)		6,5219	91877		
BIOMASA TOTAL DI	EL FUSTE (ton/ha)		14,368	306255		
BIOMASA TOTAL A	ÉREA (ton/ha)		25,144	110946		
ESTIMACIÓN DE CA	ARBONO TOTAL		,			
(ton)			12,572	205473		
041-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						

Cálculos del árbol 4 del transecto 4 Pita, 2020 Tabla 61. Transecto 4 Árbol 5

TRC 4	ARBOL 5					
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629306,846	9756521,366	CAP (cm) DAP (m)	0,16552	13,25	
ÁREA BASAL DEL AR	RBOL (m2/ha)		0,0215	17698		
VOLUMEN DEL ARBOL (m3/ha)		0,142554749				
BIOMASA TRONCO (7,0064	35926			
BIOMASA RAMAS (to		0,7822	02165			
BIOMASA AÉREA (tor		6,5017	58683			
BIOMASA TOTAL DEL FUSTE (ton/ha)			14,290	39677		
BIOMASA TOTAL AÉREA (ton/ha)		,				
ESTIMACIÓN DE CAF	RBONO TOTAL (ton)		12,504	09718		

Cálculos del árbol 5 del transecto 4 Pita, 2020

Tabla 62. Transecto 4 Árbol 6

TRC 4		ARBOL 6						
COODDENADAC	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)			
COORDENADAS	629293,723	9756513,367	60	0,19099 647823 806341 896837	17,37			
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0286	47823				
VOLUMEN DEL ARE	3OL (m3/ha)		0,2488	06341				
BIOMASA TRONCO	(ton/ha)	7,047896837						
BIOMASA RAMAS (t	on/ha)		0,8938	94805				
BIOMASA AÉREA (to	on/ha)		6,5557	13866				
BIOMASA TOTAL DI	EL FÚSTE (ton/ha)		,					
BIOMASA TOTAL AÉREA (ton/ha)			•					
ESTIMACIÓN DE CA								
(ton)			12,685	31732				
Cálgulas dal árbal 6 d	al transporta 4							

Cálculos del árbol 6 del transecto 4 Pita, 2020

Tabla 63. Transecto 4 Árbol 7

ARBOL 7							
X	Υ	CAP (cm)	DAP (m)	ALTURA (m)			
629300,222	9756505,118	42	0,13369 37433 14439 09786 86364 14706 51086 5144	9,32			
RBOL (m2/ha)		0,0140	37433				
OL (m3/ha)		0,0654	14439				
BIOMASA TRONCO (ton/ha)			,				
BIOMASA RAMAS (ton/ha)			86364				
BIOMASA AÉREA (ton/ha)		6,4343	14706				
L FUSTE (ton/ha)		14,031	51086				
BIOMASA TOTAL AÉREA (ton/ha)		•					
RBONO TOTAL			-				
		12,27	7572				
	629300,222 RBOL (m2/ha) OL (m3/ha) (ton/ha) on/ha) on/ha) EL FUSTE (ton/ha) EREA (ton/ha)	X Y 629300,222 9756505,118 RBOL (m2/ha) OL (m3/ha) (ton/ha) on/ha) EL FUSTE (ton/ha) EREA (ton/ha)	X Y CAP (cm) 629300,222 9756505,118 42 RBOL (m2/ha) 0,0140 OL (m3/ha) 0,0654 (ton/ha) 6,9546 on/ha) 0,6425 on/ha) 6,4343 EL FUSTE (ton/ha) 14,031 EREA (ton/ha) 24,55 RBONO TOTAL	X Y CAP (cm) DAP (m) 629300,222 9756505,118 42 0,13369 RBOL (m2/ha) 0,014037433 OL (m3/ha) 0,065414439 (ton/ha) 6,954609786 on/ha) 0,642586364 on/ha) 6,434314706 EL FUSTE (ton/ha) 14,03151086 EREA (ton/ha) 24,555144			

Cálculos del árbol 7 del transecto 4 Pita, 2020 Tabla 64. Transecto 4 Árbol 8

TRC 4	ARBOL 8					
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629289,973	9756500,244	39	0,12414 03705 54598 61944 01623 81513 84508 22889	7,61	
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,0121	03705		
VOLUMEN DEL ARE	3OL (m3/ha)		0,0460	54598		
BIOMASA TRONCO	(ton/ha)		6,9390	61944		
BIOMASA RAMAS (ton/ha)		0,6007	01623		
BIOMASA AÉREA (t	on/ha)		6,4140	81513		
BIOMASA TOTAL D	EL FUSTE (ton/ha)		13,953	84508		
BIOMASA TOTAL AÉREA (ton/ha)			24,419			
ESTIMACIÓN DE CA			, , , , ,			
(ton)			12,209	61445		
Cálculos del árbol 8 o	lel transecto 1	·			·	

Cálculos del árbol 8 del transecto 4 Pita, 2020

Tabla 65. Transecto 4 Árbol 9

TRC 4	ARBOL 9					
COODDENADAC	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629295,348	9756492,12	49	DAP (m) 0,15597 0106506 680537 0888084 0317424 152549 212731 7227925	11,18	
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0191	106506		
VOLUMEN DEL ARB	OL (m3/ha)		0,106	80537		
BIOMASA TRONCO (ton/ha)			6,9908	388084		
BIOMASA RAMAS (to	on/ha)		0,7403	317424		
BIOMASA AÉREA (ton/ha)			6,481	52549		
BIOMASA TOTAL DEL FÚSTE (ton/ha)			14.21	12731		
BIOMASA TOTAL AÉ	REA (ton/ha)		•			
ESTIMACIÓN DE CA	,		, -			
(ton)			12,436	613962		
Cálandaa dal ámbal O d	-1 + 1					

Cálculos del árbol 9 del transecto 4 Pita, 2020

Tabla 66. Transecto 4 Árbol 10

TRC 4		ARB	OL 10		
COODDENADAC	Χ	Υ	ALTURA (m)		
COORDENADAS	629279,849	9756487,37	38	DAP (m) 0,12096 149096 3710752 387933 3740043 7337115 2795649 7392385	8,13
ÁREA BASAL DEL A	RBOL (m2/ha)		0,011	49096	
VOLUMEN DEL ARE	3OL (m3/ha)	0,046710752			
BIOMASA TRONCO (ton/ha)			6,933	87933	
BIOMASA RAMAS (t	on/ha)		0,5867	40043	
BIOMASA AÉREA (to	on/ha)		6,4073	337115	
BIOMASA TOTAL DI	EL FUSTE (ton/ha)		13,927	795649	
BIOMASA TOTAL AÉREA (ton/ha)			24,373	392385	
ESTIMACIÓN DE CA	ARBONO TOTAL		,		
(ton)			12,186	896193	
Cálgulas dal árbal 10	dal transporta 1				

Cálculos del árbol 10 del transecto 4

Tabla 67. Transecto 4 Árbol 11

TRC 4	ARBOL 11						
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	629288,598	9756483,246	46	0,14642 838554 246021 340242 432684 292297 506522 636414	9,65		
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,0168	38554			
VOLUMEN DEL ARE	BOL (m3/ha)		0,0812	46021			
BIOMASA TRONCO (ton/ha)			6,9753	40242			
BIOMASA RAMAS (ton/ha)		0,6984	32684			
BIOMASA AÉREA (ton/ha)			6,4612	92297			
BIOMASA TOTAL DEL FUSTE (ton/ha)			14,135	06522			
BIOMASA TOTAL A	ÉREA (ton/ha)		•				
ESTIMACIÓN DE CA			,				
(ton)			12,368	18207			
BIOMASA TOTAL D BIOMASA TOTAL A ESTIMACIÓN DE CA	EL FÚSTE (ton/ha) ÉREA (ton/ha) ARBONO TOTAL		14,135 24,736	06522 36414			

Cálculos del árbol 11 del transecto 4 Pita, 2020

Tabla 68. Transecto 4 Árbol 12

TRC 4	ARBOL 12					
COODDENADAC	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629283,224	9756471,247	54	0,171887	14,68	
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,0232	204736		
VOLUMEN DEL ARE	0,170322765					
BIOMASA TRONCO	7,016801154					
BIOMASA RAMAS (ton/ha)	0,810125325				
BIOMASA AÉREA (t	on/ha)	6,515247479				
BIOMASA TOTAL D	EL FÚSTE (ton/ha)	14,34217396				
BIOMASA TOTAL AÉREA (ton/ha)		25,09880443				
ESTIMACIÓN DE CA	ARBOÑO TOTAL		,			
(ton)			12,549	940221		
Cálgulas dal árbal 12	dal transporta 1					

Cálculos del árbol 12 del transecto 4 Pita, 2020

Tabla 69. Transecto 4 Árbol 13

TRC 4		ARB	OL 13				
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	629282,474	9756458,624	52	0,165521	12,59		
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0215	17698			
VOLUMEN DEL ARE	0,135453909						
BIOMASA TRONCO	(ton/ha)	7,006435926					
BIOMASA RAMAS (t	on/ha)	0,782202165					
BIOMASA AÉREA (to	on/ha)		6,5017	' 58683			
BIOMASA TOTAL DE	EL FUSTE (ton/ha)	14,29039677					
BIOMASA TOTAL A	ÉREA (ton/ha)	25,00819435					
ESTIMACIÓN DE CA	ARBONO TOTAL						
(ton)			12,504	09718			

Cálculos del árbol 13 del transecto 4

Tabla 70. Transecto 5 Árbol 1

TRC 5	ARBOL 1					
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629366,041 9756492,503 39 0,12414	0,12414	8,16			
ÁREA BASAL DEL A	RBOL (m2/ha)		0,0121	03705		
VOLUMEN DEL ARE	3OL (m3/ha)	0,049383117				
BIOMASA TRONCO	6,939061944					
BIOMASA RAMAS (t	on/ha)	0,600701623				
BIOMASA AÉREA (to	on/ha)		6,4140	81513		
BIOMASA TOTAL DI	EL FÚSTE (ton/ha)		13,953	84508		
BIOMASA TOTAL A	ÉREA (ton/ha)	n/ha) 24,41922889				
ESTIMACIÓN DE CA						
(ton)		12,20961445				
Cálculos del árbol 1 d	al transacto 5		12,209	01443		

Cálculos del árbol 1 del transecto 5 Pita, 2020

Tabla 71. Transecto 5 Árbol 2

TRC 5	ARBOL 2					
COODDENADAC	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629356,004	9756487,196	42	0,13369	9,14	
ÁREA BASAL DEL A	RBOL (m2/ha)	0,014037433				
VOLUMEN DEL ARE	3OL (m3/ha)	0,06415107				
BIOMASA TRONCO	(ton/ha)	6,954609786				
BIOMASA RAMAS (t	on/ha)	0,642586364				
BIOMASA AÉREA (to	on/ha)		6,4343	314706		
BIOMASA TOTAL DI	EL FÚSTE (ton/ha)	14,03151086				
BIOMASA TOTAL A	ÉREA (ton/ha)	24,555144				
ESTIMACIÓN DE CA						
(ton)			12,27	7572		
Cálculos dal árbal 2 d	al transacta 5		·			

Cálculos del árbol 2 del transecto 5 Pita, 2020

Tabla 72. Transecto 5 Árbol 3

ARBOL 3						
	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
1,348	9756486,273	57	0,18144	13,98		
2/ha)		0,025	85466			
a)	0,180724074					
	7,032348995					
	0,852010065					
	6.535480672					
,						
/ha)	25.23471953					
TOTAL						
		12,617	35977			
	1,348 2/ha) a) (ton/ha) /ha)	Y 1,348 9756486,273 2/ha) a) (ton/ha) /ha) FOTAL	Y CAP (cm) 1,348 9756486,273 57 2/ha) 0,0256 a) 0,1807 7,0323 0,8520 6,5354 (ton/ha) 14,419 /ha) 25,234 FOTAL 12,617	Y CAP (cm) DAP (m) 1,348 9756486,273 57 0,18144 2/ha) 0,02585466 a) 0,180724074 7,032348995 0,852010065 6,535480672 (ton/ha) 14,41983973 /ha) 25,23471953 FOTAL 12,61735977		

Cálculos del árbol 3 del transecto 5 Pita, 2020 Tabla 73. Transecto 5 Árbol 4

TRC 5	ARBOL 4						
COODDENADAC	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	629376,424 9756476,697 48 0,1	0,15279	13,56				
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,0183	334607			
VOLUMEN DEL ARE	3OL (m3/ha)	0,124308633					
BIOMASA TRONCO	(ton/ha)	6,98570547					
BIOMASA RAMAS (t	con/ha)	0,726355844					
BIOMASA AÉREA (t	on/ha)		6,4747	' 81092			
BIOMASA TOTAL D	,		•	14,18684241			
	DMASA TOTAL AÉREA (ton/ha) 24,82697421						
ESTIMACIÓN DE CA			,				
(ton)		12,41348711					

Cálculos del árbol 4 del transecto 5 Pita, 2020

Tabla 74. Transecto 5 Árbol 5

TRC 5	ARBOL 5						
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	629384,385	9756467,813	0,013376942 0,061333278	, ,	9,17		
ÁREA BASAL DEL A		0,0133	76942				
VOLUMEN DEL ARB	OL (m3/ha)	0,061333278					
BIOMASA TRONCO	(ton/ha)	6,949427172					
BIOMASA RAMAS (to	on/ha)		0,6286	24784			
BIOMASA AÉREA (to	on/ha)		6,4275	70308			
BIOMASA TOTAL DE	EL FUSTE (ton/ha)	14,00562226					
BIOMASA TOTAL AÉ	REA (ton/ha)	24,50983896					
ESTIMACIÓN DE CA	RBONO TOTAL		·				
(ton)			12,254	91948			

Cálculos del árbol 5 del transecto 5 Pita, 2020

Tabla 75. Transecto 5 Árbol 6

TRC 5	ARBOL 6						
COORDENADAS X	Υ	CAP (cm)	DAP (m)	ALTURA (m)			
629386	9756455,815	55	0,17507	15,69			
ÁREA BASAL DEL ARBOL (m2/ha)		0,0240	72129				
VOLUMEN DEL ARBOL (m3/ha)	0,188845851						
BIOMASA TRONCO (ton/ha)	7,021983768						
BIOMASA RAMAS (ton/ha)		0,8240	086905				
BIOMASA AÉREA (ton/ha)		6,5219	91877				
BIOMASA TOTAL DEL FÚSTE		·					
(ton/ha)		14,368	306255				
BIOMÁSA TOTAL AÉREA (ton/ha)	25,14410946						
ESTIMACIÓN DE CARBONO TOTAL		•					
(ton)		12,572	205473				

Cálculos del árbol 6 del transecto 5 Pita, 2020 Tabla 76. Transecto 5 Árbol 7

TRC 5		AR	BOL 7			
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)	
COORDENADAS	629388,077	9756449,469	49	0,155971	12,45	
ÁREA BASAL DEL A	RBOL (m2/ha)	0,019106506				
VOLUMEN DEL ARE	0,118938001					
BIOMASA TRONCO	(ton/ha)	6,990888084				
BIOMASA RAMAS (t	on/ha)		0,7403	317424		
BIOMASA AÉREA (to	on/ha)		6,481	52549		
BIOMASA TOTAL DE	EL FÚSTE (ton/ha)	•				
BIOMASA TOTAL A	ÉREA (ton/ha) 24,87227925					
ESTIMACIÓN DE CA	ARBOÑO TOTAL					
(ton)			12,436	13962		

Cálculos del árbol 7 del transecto 5

Pita, 2020

Tabla 77. Transecto 5 Árbol 8

TRC 5		ARBOL 8					
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
COORDENADAS	629394,076	394,076 9756453,046 38 0,12096	7,64				
ÁREA BASAL DEL A	RBOL (m2/ha)		0,011	49096			
VOLUMEN DEL ARB	OL (m3/ha)	0,043895467					
BIOMASA TRONCO	(ton/ha)	6,93387933					
BIOMASA RAMAS (to	on/ha)	0,586740043					
BIOMASA AÉREA (to	on/ha)		6,4073	37115			
BIOMASA TOTAL DE	EL FUSTE (ton/ha)	a) 13,92795649					
BIOMASA TOTAL AÉ	REA (ton/ha)	24,37392385					
ESTIMACIÓN DE CA	RBONO TOTAL		•				
(ton)			12,186	96193			

Cálculos del árbol 8 del transecto 5 Pita, 2020

Tabla 78. Transecto 5 Árbol 9

Tabla 78. Transect	o 5 Arboi 9						
TRC 5	ARBOL 9						
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
	629398,575	9756442,778	53	0,1687	14,67		
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,0223	353259			
VOLUMEN DEL ARE	0,163961158						
BIOMASA TRONCO	(ton/ha)	7,01161854					
BIOMASA RAMAS (1	ton/ha)	0,796163745					
BIOMASA AÉREA (t	on/ha)	6,508503081					
BIOMASA TOTAL D	EL FUSTE (ton/ha)	14,31628537					
BIOMASA TOTAL AI	ÉREA (ton/ha)	A (ton/ha) 25,05349939					
ESTIMACIÓN DE CA			•				
(ton)			12,526	74969			

Cálculos del árbol 9 del transecto 5

Tabla 79. Transecto 5 Árbol 10

TRC 5		ARBOL 10						
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)			
COORDENADAS	629407,574	9756433,663	44	0,140056 015406162 050686275 064975014 670509524 147803501 ,08328804	6,58			
ÁREA BASAL DEL A	ARBOL (m2/ha)		0,0154	106162				
VOLUMEN DEL ARE	3OL (m3/ha)		0,0506	686275				
BIOMASA TRONCO (ton/ha)			6,9649	975014				
BIOMASA RAMAS (ton/ha)			0,6705	509524				
BIOMASA AÉREA (ton/ha)			6,4478	303501				
BIOMASA TOTAL DEL FÚSTE (ton/ha)			14,083	328804				
BIOMASA TOTAL AÉREA (ton/ha)		24,64575407						
ESTIMACIÓN DE CARBOÑO TOTAL			,-					
(ton)			12,322	287703				
Cálgulas dal árbal 10	dal transporta F		•					

Cálculos del árbol 10 del transecto 5 Pita, 2020

Tabla 80. Transecto 5 Árbol 11

TRC 5	ARBOL 11						
COORDENADAS	X	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
	629412,881	9756423,626	47	0,14961	7,34		
ÁREA BASAL DEL ARBOL (m2/ha)		0,017578622					
VOLUMEN DEL ARBOL (m3/ha)		0,064513544					
BIOMASA TRONCO (ton/ha)		6,980522856					
BIOMASA RAMAS (ton/ha)		0,712394264					
BIOMASA AÉREA (ton/ha)		6,468036695					
BIOMASA TOTAL DEL FÚSTE (ton/ha)		14,16095381					
BIOMASA TOTAL AÉREA (ton/ha)		24,78166918					
ESTIMACIÓN DE CA			, -				
(ton)	12,39083459						
Cálculas dal árbal 11	dal transports E						

Cálculos del árbol 11 del transecto 5 Pita, 2020

Tabla 81. Transecto 5 Árbol 12

TRC 5		ARBOL 12					
COORDENADAS	Χ	Υ	CAP (cm)	DAP (m)	ALTURA (m)		
	629416,343	9756414,973	35	0,111408	5,14		
ÁREA BASAL DEL ARBOL (m2/ha)		0,009748217					
VOLUMEN DEL ARBOL (m3/ha)		0,025052919					
BIOMASA TRONCO (ton/ha)		6,918331488					
BIOMASA RAMAS (ton/ha)		0,544855303					
BIOMASA AÉREA (ton/ha)		6,387103922					
BIOMASA TOTAL DEL FUSTE (ton/ha)		13,85029071					
BIOMASA TOTAL AÉ	24,23800875						
ESTIMACIÓN DE CA							
(ton)	12,11900437						

Cálculos del árbol 12 del transecto 5 Pita, 2020